These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 16189201)
1. Milk proteins and iron absorption: contrasting effects of different caseinophosphopeptides. Kibangou IB; Bouhallab S; Henry G; Bureau F; Allouche S; Blais A; Guérin P; Arhan P; Bouglé DL Pediatr Res; 2005 Oct; 58(4):731-4. PubMed ID: 16189201 [TBL] [Abstract][Full Text] [Related]
2. Improved absorption of caseinophosphopeptide-bound iron: role of alkaline phosphatase. Ani-Kibangou B; Bouhallab S; Mollé D; Henry G; Bureau F; Neuville D; Arhan P; Bouglé D J Nutr Biochem; 2005 Jul; 16(7):398-401. PubMed ID: 15992677 [TBL] [Abstract][Full Text] [Related]
3. Influence of bovine and caprine casein phosphopeptides differing in alphas1-casein content in determining the absorption of calcium from bovine and caprine calcium-fortified milks in rats. Mora-Gutierrez A; Farrell HM; Attaie R; McWhinney VJ; Wang C J Dairy Res; 2007 Aug; 74(3):356-66. PubMed ID: 17655779 [TBL] [Abstract][Full Text] [Related]
4. Influence of various phosphopeptides of caseins on iron absorption. Bouhallab S; Cinga V; Aít-Oukhatar N; Bureau F; Neuville D; Arhan P; Maubois JL; Bouglé D J Agric Food Chem; 2002 Nov; 50(24):7127-30. PubMed ID: 12428971 [TBL] [Abstract][Full Text] [Related]
5. Caseinophosphopeptide-bound iron: protective effect against gut peroxidation. Kibangou I; Bouhallab S; Bureau F; Allouche S; Thouvenin G; Bouglé D Ann Nutr Metab; 2008; 52(3):177-80. PubMed ID: 18515967 [TBL] [Abstract][Full Text] [Related]
6. Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography-mass spectrometry/flame atomic-absorption spectroscopy. Miquel E; Alegría A; Barberá R; Farré R Anal Bioanal Chem; 2005 Mar; 381(5):1082-8. PubMed ID: 15678335 [TBL] [Abstract][Full Text] [Related]
7. The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and Caco-2 cells. Hansen M; Sandström B; Lönnerdal B Pediatr Res; 1996 Oct; 40(4):547-52. PubMed ID: 8888281 [TBL] [Abstract][Full Text] [Related]
8. Improvement of zinc intestinal absorption and reduction of zinc/iron interaction using metal bound to the caseinophosphopeptide 1-25 of beta-casein. Pérès JM; Bouhallab S; Petit C; Bureau F; Maubois JL; Arhan P; Bouglé D Reprod Nutr Dev; 1998; 38(4):465-72. PubMed ID: 9795989 [TBL] [Abstract][Full Text] [Related]
9. Bioavailability of caseinophosphopeptide-bound iron. Ait-Oukhatar N; Peres JM; Bouhallab S; Neuville D; Bureau F; Bouvard G; Arhan P; Bougle D J Lab Clin Med; 2002 Oct; 140(4):290-4. PubMed ID: 12389027 [TBL] [Abstract][Full Text] [Related]
10. Iron tissue storage and hemoglobin levels of deficient rats repleted with iron bound to the caseinophosphopeptide 1-25 of beta-casein. Aît-Oukhatar N; Bouhallab S; Arhan P; Maubois JL; Drosdowsky M; Bouglé D J Agric Food Chem; 1999 Jul; 47(7):2786-90. PubMed ID: 10552566 [TBL] [Abstract][Full Text] [Related]
11. Dephosphorylation of sodium caseinate, enzymatically hydrolyzed casein and casein phosphopeptides by intestinal alkaline phosphatase: implications for iron availability. Yeung AC; Glahn RP; Miller DD J Nutr Biochem; 2001 May; 12(5):292-299. PubMed ID: 11382547 [TBL] [Abstract][Full Text] [Related]
12. Effect of Caseinophosphopeptides from αs- and β-Casein on Iron Bioavailability in HuH7 Cells. García-Nebot MJ; Alegría A; Barberá R; Gaboriau F; Bouhallab S J Agric Food Chem; 2015 Aug; 63(30):6757-63. PubMed ID: 26154705 [TBL] [Abstract][Full Text] [Related]
13. The effect of casein phosphopeptides on calcium absorption from calcium-fortified milk in growing rats. Tsuchita H; Suzuki T; Kuwata T Br J Nutr; 2001 Jan; 85(1):5-10. PubMed ID: 11227028 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of absorption of caseinophosphopeptide bound iron. Pérès JM; Bouhallab S; Bureau F; Neuville D; Maubois JL; Devroede G; Arhan P; Bouglé D J Nutr Biochem; 1999 Apr; 10(4):215-22. PubMed ID: 15539293 [TBL] [Abstract][Full Text] [Related]
15. Iron and zinc bioavailability in Caco-2 cells: influence of caseinophosphopeptides. García-Nebot MJ; Barberá R; Alegría A Food Chem; 2013 Jun; 138(2-3):1298-303. PubMed ID: 23411246 [TBL] [Abstract][Full Text] [Related]
16. Role of phosphate groups on antiviral activity of casein phosphopeptide against feline calicivirus as a surrogate for norovirus. Lebetwa N; Mitani T; Nakamura S; Katayama S J Sci Food Agric; 2017 Apr; 97(6):1939-1944. PubMed ID: 27545286 [TBL] [Abstract][Full Text] [Related]
17. Biopeptides of milk: caseinophosphopeptides and mineral bioavailability. Bouhallab S; Bouglé D Reprod Nutr Dev; 2004; 44(5):493-8. PubMed ID: 15636166 [TBL] [Abstract][Full Text] [Related]
18. NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes. Cross KJ; Huq NL; Stanton DP; Sum M; Reynolds EC Biomaterials; 2004 Sep; 25(20):5061-9. PubMed ID: 15109869 [TBL] [Abstract][Full Text] [Related]
19. Effect of milk and casein on the absorption of supplemental iron in the mouse and chick. Carmichael D; Christopher J; Hegenauer J; Saltman P Am J Clin Nutr; 1975 May; 28(5):487-93. PubMed ID: 1130307 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides. Liu G; Guo B; Luo M; Sun S; Lin Q; Kan Q; He Z; Miao J; Du H; Xiao H; Cao Y Crit Rev Food Sci Nutr; 2024; 64(4):996-1014. PubMed ID: 36052610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]