BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16189266)

  • 1. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia.
    Holleman A; den Boer ML; de Menezes RX; Cheok MH; Cheng C; Kazemier KM; Janka-Schaub GE; Göbel U; Graubner UB; Evans WE; Pieters R
    Blood; 2006 Jan; 107(2):769-76. PubMed ID: 16189266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia.
    Schotte D; De Menezes RX; Akbari Moqadam F; Khankahdani LM; Lange-Turenhout E; Chen C; Pieters R; Den Boer ML
    Haematologica; 2011 May; 96(5):703-11. PubMed ID: 21242186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia.
    Stams WA; den Boer ML; Beverloo HB; Meijerink JP; van Wering ER; Janka-Schaub GE; Pieters R
    Clin Cancer Res; 2005 Apr; 11(8):2974-80. PubMed ID: 15837750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia.
    Stams WA; den Boer ML; Holleman A; Appel IM; Beverloo HB; van Wering ER; Janka-Schaub GE; Evans WE; Pieters R
    Blood; 2005 Jun; 105(11):4223-5. PubMed ID: 15718422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute lymphoblastic leukemia with TEL-AML1 fusion has lower expression of genes involved in purine metabolism and lower de novo purine synthesis.
    Zaza G; Yang W; Kager L; Cheok M; Downing J; Pui CH; Cheng C; Relling MV; Evans WE
    Blood; 2004 Sep; 104(5):1435-41. PubMed ID: 15142881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment.
    Holleman A; Cheok MH; den Boer ML; Yang W; Veerman AJ; Kazemier KM; Pei D; Cheng C; Pui CH; Relling MV; Janka-Schaub GE; Pieters R; Evans WE
    N Engl J Med; 2004 Aug; 351(6):533-42. PubMed ID: 15295046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular signatures in childhood acute leukemia and their correlations to expression patterns in normal hematopoietic subpopulations.
    Andersson A; Olofsson T; Lindgren D; Nilsson B; Ritz C; Edén P; Lassen C; Råde J; Fontes M; Mörse H; Heldrup J; Behrendtz M; Mitelman F; Höglund M; Johansson B; Fioretos T
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19069-74. PubMed ID: 16354839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling.
    Yeoh EJ; Ross ME; Shurtleff SA; Williams WK; Patel D; Mahfouz R; Behm FG; Raimondi SC; Relling MV; Patel A; Cheng C; Campana D; Wilkins D; Zhou X; Li J; Liu H; Pui CH; Evans WE; Naeve C; Wong L; Downing JR
    Cancer Cell; 2002 Mar; 1(2):133-43. PubMed ID: 12086872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics.
    Kager L; Cheok M; Yang W; Zaza G; Cheng Q; Panetta JC; Pui CH; Downing JR; Relling MV; Evans WE
    J Clin Invest; 2005 Jan; 115(1):110-7. PubMed ID: 15630450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols.
    Holleman A; den Boer ML; Cheok MH; Kazemier KM; Pei D; Downing JR; Janka-Schaub GE; Göbel U; Graubner UB; Pui CH; Evans WE; Pieters R
    Blood; 2006 Sep; 108(6):1984-90. PubMed ID: 16709928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric acute lymphoblastic leukemia.
    Carroll WL; Bhojwani D; Min DJ; Raetz E; Relling M; Davies S; Downing JR; Willman CL; Reed JC
    Hematology Am Soc Hematol Educ Program; 2003; ():102-31. PubMed ID: 14633779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of gene expression profiles that segregate patients with childhood leukemia.
    Moos PJ; Raetz EA; Carlson MA; Szabo A; Smith FE; Willman C; Wei Q; Hunger SP; Carroll WL
    Clin Cancer Res; 2002 Oct; 8(10):3118-30. PubMed ID: 12374679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEL-AML1 fusion identifies a subset of children with standard risk acute lymphoblastic leukemia who have an excellent prognosis when treated with therapy that includes a single delayed intensification.
    Maloney K; McGavran L; Murphy J; Odom L; Stork L; Wei Q; Hunger S
    Leukemia; 1999 Nov; 13(11):1708-12. PubMed ID: 10557042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia.
    Stam RW; Den Boer ML; Schneider P; de Boer J; Hagelstein J; Valsecchi MG; de Lorenzo P; Sallan SE; Brady HJ; Armstrong SA; Pieters R
    Blood; 2010 Feb; 115(5):1018-25. PubMed ID: 19965632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure.
    Beesley AH; Cummings AJ; Freitas JR; Hoffmann K; Firth MJ; Ford J; de Klerk NH; Kees UR
    Br J Haematol; 2005 Nov; 131(4):447-56. PubMed ID: 16281934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia.
    Holleman A; den Boer ML; Kazemier KM; Beverloo HB; von Bergh AR; Janka-Schaub GE; Pieters R
    Blood; 2005 Sep; 106(5):1817-23. PubMed ID: 15899912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia.
    Steeghs EMP; Boer JM; Hoogkamer AQ; Boeree A; de Haas V; de Groot-Kruseman HA; Horstmann MA; Escherich G; Pieters R; den Boer ML
    Sci Rep; 2019 Mar; 9(1):4634. PubMed ID: 30874617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines.
    Uphoff CC; MacLeod RA; Denkmann SA; Golub TR; Borkhardt A; Janssen JW; Drexler HG
    Leukemia; 1997 Mar; 11(3):441-7. PubMed ID: 9067587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute leukemia: subtype discovery and prediction of outcome by gene expression profiling.
    Downing JR
    Verh Dtsch Ges Pathol; 2003; 87():66-71. PubMed ID: 16888896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HOX gene expression in phenotypic and genotypic subgroups and low HOXA gene expression as an adverse prognostic factor in pediatric ALL.
    Starkova J; Zamostna B; Mejstrikova E; Krejci R; Drabkin HA; Trka J
    Pediatr Blood Cancer; 2010 Dec; 55(6):1072-82. PubMed ID: 20672366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.