BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16189582)

  • 1. How well can new-generation density functional methods describe stacking interactions in biological systems?
    Zhao Y; Truhlar DG
    Phys Chem Chem Phys; 2005 Jul; 7(14):2701-5. PubMed ID: 16189582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How well can density functional methods describe hydrogen bonds to pi acceptors?
    Zhao Y; Tishchenko O; Truhlar DG
    J Phys Chem B; 2005 Oct; 109(41):19046-51. PubMed ID: 16853454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-empirical molecular orbital methods including dispersion corrections for the accurate prediction of the full range of intermolecular interactions in biomolecules.
    McNamara JP; Hillier IH
    Phys Chem Chem Phys; 2007 May; 9(19):2362-70. PubMed ID: 17492099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended weak bonding interactions in DNA: pi-stacking (base-base), base-backbone, and backbone-backbone interactions.
    Matta CF; Castillo N; Boyd RJ
    J Phys Chem B; 2006 Jan; 110(1):563-78. PubMed ID: 16471569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motifs in nucleic acids: molecular mechanics restraints for base pairing and base stacking.
    Harvey SC; Wang C; Teletchea S; Lavery R
    J Comput Chem; 2003 Jan; 24(1):1-9. PubMed ID: 12483670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature and magnitude of aromatic stacking of nucleic acid bases.
    Sponer J; Riley KE; Hobza P
    Phys Chem Chem Phys; 2008 May; 10(19):2595-610. PubMed ID: 18464974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stacking interactions and the twist of DNA.
    Cooper VR; Thonhauser T; Puzder A; Schröder E; Lundqvist BI; Langreth DC
    J Am Chem Soc; 2008 Jan; 130(4):1304-8. PubMed ID: 18163624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond nucleic acid base pairs: from triads to heptads.
    Sühnel J
    Biopolymers; 2001-2002; 61(1):32-51. PubMed ID: 11891627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions.
    Zhao Y; Truhlar DG
    J Phys Chem A; 2005 Jun; 109(25):5656-67. PubMed ID: 16833898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing multiple core-hole interactions in the nitrogen K-edge of DNA base pairs by multidimensional attosecond X-ray spectroscopy. A simulation study.
    Healion DM; Schweigert IV; Mukamel S
    J Phys Chem A; 2008 Nov; 112(45):11449-61. PubMed ID: 18928268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computation of large systems with an economic basis set: structures and reactivity indices of nucleic acid base pairs from density functional theory.
    Fan WJ; Zhang RQ; Liu S
    J Comput Chem; 2007 Apr; 28(5):967-74. PubMed ID: 17269120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the effects of sequence and structure on the hydrogen bonding and π-stacking interactions in nucleic acids.
    Kamya PR; Muchall HM
    J Phys Chem A; 2011 Nov; 115(45):12800-8. PubMed ID: 21721560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-bonding interactions in peptide nucleic acid and deoxyribonucleic acid: a comparative study.
    Herbert HE; Halls MD; Hratchian HP; Raghavachari K
    J Phys Chem B; 2006 Feb; 110(7):3336-43. PubMed ID: 16494348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine.
    Rutledge LR; Wheaton CA; Wetmore SD
    Phys Chem Chem Phys; 2007 Jan; 9(4):497-509. PubMed ID: 17216066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do size-expanded DNA nucleobases enhance duplex stability? Computational analysis of the hydrogen-bonding and stacking ability of xDNA bases.
    McConnell TL; Wetmore SD
    J Phys Chem B; 2007 Mar; 111(11):2999-3009. PubMed ID: 17388411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of the electrostatic interaction between nucleic acid bases.
    Toczyłowski RR; Cybulski SM
    J Chem Phys; 2005 Oct; 123(15):154312. PubMed ID: 16252953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-functional, density-functional tight-binding, and wave function calculations on biomolecular systems.
    Kubar T; Jurecka P; Cerný J; Rezac J; Otyepka M; Valdés H; Hobza P
    J Phys Chem A; 2007 Jul; 111(26):5642-7. PubMed ID: 17411021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How well can new-generation density functionals describe protonated epoxides where older functionals fail?
    Zhao Y; Truhlar DG
    J Org Chem; 2007 Jan; 72(1):295-8. PubMed ID: 17194116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.