These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 16189613)

  • 1. Surface tension of a Lennard-Jones liquid under supersaturation.
    He S; Attard P
    Phys Chem Chem Phys; 2005 Aug; 7(15):2928-35. PubMed ID: 16189613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation methodology of the ghost interface theory for the planar surface tension.
    Moody MP; Attard P
    J Chem Phys; 2004 Jan; 120(4):1892-904. PubMed ID: 15268323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of equilibrium reactions at modified vapor-liquid interfaces.
    Turner CH
    Langmuir; 2007 Feb; 23(5):2525-30. PubMed ID: 17309206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory of inhomogeneous liquids. III. Liquid-vapor nucleation.
    Lutsko JF
    J Chem Phys; 2008 Dec; 129(24):244501. PubMed ID: 19123511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials.
    Gloor GJ; Jackson G; Blas FJ; de Miguel E
    J Chem Phys; 2005 Oct; 123(13):134703. PubMed ID: 16223322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The free energy of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2007 Oct; 127(15):154505. PubMed ID: 17949171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of equilibrium reactions at vapor-liquid interfaces.
    Turner CH
    J Phys Chem B; 2005 Dec; 109(49):23588-95. PubMed ID: 16375335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R; Sum AK; Narumi T; Yasuoka K
    J Chem Phys; 2011 Mar; 134(12):124708. PubMed ID: 21456696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation in the grand canonical ensemble.
    Eslami H; Müller-Plathe F
    J Comput Chem; 2007 Jul; 28(10):1763-73. PubMed ID: 17342717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of surface tension and Tolman length as a function of droplet radius from experimental nucleation rate and supersaturation ratio: metal vapor homogeneous nucleation.
    Onischuk AA; Purtov PA; Baklanov AM; Karasev VV; Vosel SV
    J Chem Phys; 2006 Jan; 124(1):14506. PubMed ID: 16409040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curvature-dependent surface tension of a growing droplet.
    Moody MP; Attard P
    Phys Rev Lett; 2003 Aug; 91(5):056104. PubMed ID: 12906610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the surface tension of cyclic and aromatic hydrocarbons from Monte Carlo simulations using an anisotropic united atom model (AUA).
    Biscay F; Ghoufi A; Lachet V; Malfreyt P
    Phys Chem Chem Phys; 2009 Aug; 11(29):6132-47. PubMed ID: 19606323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface tension of associating fluids by Monte Carlo simulations.
    Tapia-Medina C; Orea P; Mier-Y-Teran L; Alejandre J
    J Chem Phys; 2004 Feb; 120(5):2337-42. PubMed ID: 15268372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.