BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1618988)

  • 1. Peptide maps of five human pepsin isoenzymes and other aspartic proteinases.
    Jones AT; Roberts NB
    J Chromatogr; 1992 May; 599(1-2):179-84. PubMed ID: 1618988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Five human gastric aspartic proteinases: N-terminal amino acid sequences and amino acid composition.
    Roberts NB; Peek K; Keen JN; Taylor WH
    Int J Biochem Cell Biol; 1995 Feb; 27(2):133-7. PubMed ID: 7767781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of reversed-phase high-performance liquid chromatography and capillary zone electrophoresis to the peptide mapping of pepsin isoenzymes.
    Hynek R; Kasicka V; Kucerová Z; Kás J
    J Chromatogr B Biomed Appl; 1996 May; 681(1):37-45. PubMed ID: 8798910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversed-phase high-performance liquid chromatography of peptides of porcine pepsin prepared by the use of various forms of immobilized alpha-chymotrypsin.
    Vanková H; Kucerová Z; Turková J
    J Chromatogr B Biomed Sci Appl; 2001 Mar; 753(1):37-43. PubMed ID: 11302446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human pepsin 3b peptide map sequence analysis, genotype and hydrophobic nature.
    Jones AT; Keen JN; Roberts NB
    J Chromatogr; 1993 Aug; 646(1):207-12. PubMed ID: 8408429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pressure on the activity and spectroscopic properties of carboxyl proteinases. Apparent correlation of pepstatin-insensitivity and pressure response.
    Fujiwara S; Kunugi S; Oyama H; Oda K
    Eur J Biochem; 2001 Feb; 268(3):645-55. PubMed ID: 11168403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino acid sequence of rhizopuspepsin, an aspartic proteinase from Rhizopus chinensis.
    Takahashi K
    J Biol Chem; 1987 Feb; 262(4):1468-78. PubMed ID: 3100534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region.
    Andreeva NS; Bochkarev A; Pechik I
    Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318
    [No Abstract]   [Full Text] [Related]  

  • 9. [A new approach to the use of fluorogenic dinitrophenyl-containing substrates for determining the proteolytic activity of aspartyl proteinases].
    Goptar' IA; Balandina GN; Lysogorskaia EN; Filippova IIu
    Prikl Biokhim Mikrobiol; 2007; 43(4):432-6. PubMed ID: 17929570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why does pepsin have a negative charge at very low pH? An analysis of conserved charged residues in aspartic proteinases.
    Andreeva NS; James MN
    Adv Exp Med Biol; 1991; 306():39-45. PubMed ID: 1812734
    [No Abstract]   [Full Text] [Related]  

  • 11. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain.
    Abad-Zapatero C; Rydel TJ; Erickson J
    Proteins; 1990; 8(1):62-81. PubMed ID: 2217165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspartic proteinases--Fourier transform IR studies of the aspartic carboxylic groups in the active site of pepsin.
    Iliadis G; Zundel G; Brzezinski B
    FEBS Lett; 1994 Oct; 352(3):315-7. PubMed ID: 7925992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases.
    Bailey D; Carpenter EP; Coker A; Coker S; Read J; Jones AT; Erskine P; Aguilar CF; Badasso M; Toldo L; Rippmann F; Sanz-Aparicio J; Albert A; Blundell TL; Roberts NB; Wood SP; Cooper JB
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):541-52. PubMed ID: 22525752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of pepsins A1 and A2 from the Antarctic rock cod Trematomus bernacchii.
    Brier S; Maria G; Carginale V; Capasso A; Wu Y; Taylor RM; Borotto NB; Capasso C; Engen JR
    FEBS J; 2007 Dec; 274(23):6152-66. PubMed ID: 17976195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 17. Parapepsins: two proteolytic enzymes associated with porcine pepsin.
    RYLE AP; PORTER RR
    Biochem J; 1959 Sep; 73(1):75-86. PubMed ID: 14440468
    [No Abstract]   [Full Text] [Related]  

  • 18. [Study of the amino acids formed by hydrolysis of horse globin by crystalline pepsin, trypsin and chymotrypsin].
    ROVERY M; DESNUELLE P
    Biochim Biophys Acta; 1952 Apr; 8(4):450-8. PubMed ID: 13208671
    [No Abstract]   [Full Text] [Related]  

  • 19. [Fermentative activity of decomposition products of trypsin, chymotrypsin, and pepsin].
    CHERNIKOV MP
    Vopr Med Khim; 1956; 2(1):59-63. PubMed ID: 13352867
    [No Abstract]   [Full Text] [Related]  

  • 20. A novel catalysis by porcine pepsin in debranching guar galactomannan.
    Shobha MS; Gowda LR; Tharanathan RN
    Carbohydr Polym; 2014 Feb; 102():615-21. PubMed ID: 24507326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.