These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 16189962)
1. A mathematical model for source separation of MMG signals recorded with a coupled microphone-accelerometer sensor pair. Silva J; Chau T IEEE Trans Biomed Eng; 2005 Sep; 52(9):1493-501. PubMed ID: 16189962 [TBL] [Abstract][Full Text] [Related]
2. The image of motor units architecture in the mechanomyographic signal during the single motor unit contraction: in vivo and simulation study. Kaczmarek P; Celichowski J; Drzymała-Celichowska H; Kasiński A J Electromyogr Kinesiol; 2009 Aug; 19(4):553-63. PubMed ID: 18455438 [TBL] [Abstract][Full Text] [Related]
3. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. Corbishley P; Rodríguez-Villegas E IEEE Trans Biomed Eng; 2008 Jan; 55(1):196-204. PubMed ID: 18232362 [TBL] [Abstract][Full Text] [Related]
4. Detection of respiratory sounds at the external ear. Pressler GA; Mansfield JP; Pasterkamp H; Wodicka GR IEEE Trans Biomed Eng; 2004 Dec; 51(12):2089-96. PubMed ID: 15605855 [TBL] [Abstract][Full Text] [Related]
5. Comparison of a piezoelectric contact sensor and an accelerometer for examining mechanomyographic amplitude and mean power frequency versus torque relationships during isokinetic and isometric muscle actions of the biceps brachii. Beck TW; Housh TJ; Johnson GO; Weir JP; Cramer JT; Coburn JW; Malek MH J Electromyogr Kinesiol; 2006 Aug; 16(4):324-35. PubMed ID: 16243542 [TBL] [Abstract][Full Text] [Related]
6. Initial mechanomyographical signals from twitching fibres of human skeletal muscle. Morimoto S; Takemori S Acta Physiol (Oxf); 2007 Dec; 191(4):319-27. PubMed ID: 17784904 [TBL] [Abstract][Full Text] [Related]
7. Acoustical signal properties for cardiac/respiratory activity and apneas. Kaniusas E; Pfützner H; Saletu B IEEE Trans Biomed Eng; 2005 Nov; 52(11):1812-22. PubMed ID: 16285384 [TBL] [Abstract][Full Text] [Related]
8. A non-invasive acoustic and vibration analysis technique for evaluation of hip joint conditions. Glaser D; Komistek RD; Cates HE; Mahfouz MR J Biomech; 2010 Feb; 43(3):426-32. PubMed ID: 19931084 [TBL] [Abstract][Full Text] [Related]
9. Frequency features of mechanomyographic signals of human soleus muscle during quiet standing. Kouzaki M; Fukunaga T J Neurosci Methods; 2008 Aug; 173(2):241-8. PubMed ID: 18606185 [TBL] [Abstract][Full Text] [Related]
10. An automated system for 24-h monitoring of cough frequency: the leicester cough monitor. Matos S; Birring SS; Pavord ID; Evans DH IEEE Trans Biomed Eng; 2007 Aug; 54(8):1472-9. PubMed ID: 17694868 [TBL] [Abstract][Full Text] [Related]
11. A comparison between mechanomyographic condenser microphone and accelerometer measurements during submaximal isometric, concentric and eccentric contractions. Jaskólska A; Madeleine P; Jaskólski A; Kisiel-Sajewicz K; Arendt-Nielsen L J Electromyogr Kinesiol; 2007 Jun; 17(3):336-47. PubMed ID: 16750395 [TBL] [Abstract][Full Text] [Related]
12. Fractional delay estimation for blind source separation and localization of temporomandibular joint sounds. Took CC; Sanei S; Rickard S; Chambers J; Dunne S IEEE Trans Biomed Eng; 2008 Mar; 55(3):949-56. PubMed ID: 18334386 [TBL] [Abstract][Full Text] [Related]
13. MMG measurement: a high-sensitivity microphone-based sensor for clinical use. Courteville A; Gharbi T; Cornu JY IEEE Trans Biomed Eng; 1998 Feb; 45(2):145-50. PubMed ID: 9473837 [TBL] [Abstract][Full Text] [Related]
14. Underdetermined blind source separation of temporomandibular joint sounds. Took CC; Sanei S; Chambers J; Dunne S IEEE Trans Biomed Eng; 2006 Oct; 53(10):2123-6. PubMed ID: 17019879 [TBL] [Abstract][Full Text] [Related]
15. The effects of motion artifact on mechanomyography: A comparative study of microphones and accelerometers. Posatskiy AO; Chau T J Electromyogr Kinesiol; 2012 Apr; 22(2):320-4. PubMed ID: 22019815 [TBL] [Abstract][Full Text] [Related]
16. Detection of cough signals in continuous audio recordings using hidden Markov models. Matos S; Birring SS; Pavord ID; Evans DH IEEE Trans Biomed Eng; 2006 Jun; 53(6):1078-83. PubMed ID: 16761835 [TBL] [Abstract][Full Text] [Related]
17. Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding--Part I: methodology. Hadjileontiadis LJ IEEE Trans Biomed Eng; 2005 Jun; 52(6):1143-8. PubMed ID: 15977745 [TBL] [Abstract][Full Text] [Related]
18. Qualitative and quantitative evaluation of heart sound reduction from lung sound recordings. Gnitecki J; Hossain I; Pasterkamp H; Moussavi Z IEEE Trans Biomed Eng; 2005 Oct; 52(10):1788-92. PubMed ID: 16235665 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional spatial distribution of surface mechanomyographical response to single motor unit activity. Cescon C; Madeleine P; Graven-Nielsen T; Merletti R; Farina D J Neurosci Methods; 2007 Jan; 159(1):19-25. PubMed ID: 16876257 [TBL] [Abstract][Full Text] [Related]
20. Experimentally verified model of mechanomyograms recorded during single motor unit contractions. Kaczmarek P; Celichowski J; Kasiński A J Electromyogr Kinesiol; 2005 Dec; 15(6):617-30. PubMed ID: 16055349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]