These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16190014)

  • 41. Distribution coefficients of tin in Japanese agricultural soils and the factors affecting tin sorption behavior.
    Nakamaru Y; Uchida S
    J Environ Radioact; 2008 Jun; 99(6):1003-10. PubMed ID: 18164522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment.
    Ghafoor A; Jarvis NJ; Stenström J
    Pest Manag Sci; 2013 Aug; 69(8):919-29. PubMed ID: 23281208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
    Dontsova KM; Hayes C; Pennington JC; Porter B
    J Environ Qual; 2009; 38(4):1458-65. PubMed ID: 19465721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced irreversible sorption of carbaryl to soils amended with crop-residue-derived biochar.
    Qiu Y; Wu M; Jiang J; Li L; Sheng GD
    Chemosphere; 2013 Sep; 93(1):69-74. PubMed ID: 23711410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils.
    Si Y; Takagi K; Iwasaki A; Zhou D
    Pest Manag Sci; 2009 Sep; 65(9):956-62. PubMed ID: 19441005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr.
    Baglieri A; Nègre M; Trotta F; Bracco P; Gennari M
    J Environ Sci Health B; 2013; 48(9):784-92. PubMed ID: 23688229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant.
    Aşçi Y; Nurbaş M; Açikel YS
    J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pesticide runoff from greenhouse production.
    Roseth R; Haarstad K
    Water Sci Technol; 2010; 61(6):1373-81. PubMed ID: 20351415
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments.
    Sun K; Gao B; Zhang Z; Zhang G; Liu X; Zhao Y; Xing B
    Chemosphere; 2010 Aug; 80(7):709-15. PubMed ID: 20579690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pesticide transport with runoff from turf: observations compared with TurfPQ model simulations.
    Kramer KE; Rice PJ; Horgan BP; Rittenhouse JL; King KW
    J Environ Qual; 2009; 38(6):2402-11. PubMed ID: 19875796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities.
    Chiang PN; Wang MK; Huang PM; Wang JJ; Chiu CY
    J Environ Radioact; 2010 Jun; 101(6):472-81. PubMed ID: 19038481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption-desorption of HCH and endosulfan on a soil.
    Wadaskar JV; Ekhe JD; Kale SP
    Environ Technol; 2006 Sep; 27(9):1011-7. PubMed ID: 17067127
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of the adsorption of ionizable pesticides in soils.
    Kah M; Brown CD
    J Agric Food Chem; 2007 Mar; 55(6):2312-22. PubMed ID: 17295514
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dissipation and sorption of six commonly used pesticides in two contrasting soils of New Zealand.
    Sarmah AK; Close ME; Mason NW
    J Environ Sci Health B; 2009 May; 44(4):325-36. PubMed ID: 19365747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pesticide transport with runoff from creeping bentgrass turf: Relationship of pesticide properties to mass transport.
    Rice PJ; Horgan BP; Rittenhouse JL
    Environ Toxicol Chem; 2010 Jun; 29(6):1209-14. PubMed ID: 20821562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of soil loading on dermal absorption efficiency from contaminated soils.
    Duff RM; Kissel JC
    J Toxicol Environ Health; 1996 May; 48(1):93-106. PubMed ID: 8637061
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Persistence and biodegradation of carbaryl in soils.
    Venkateswarlu K; Chendrayan K; Sethunathan N
    J Environ Sci Health B; 1980; 15(4):421-9. PubMed ID: 6772707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil.
    Ćwieląg-Piasecka I
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy.
    Ahmad R; Kookana RS; Alston AM; Skjemstad JO
    Environ Sci Technol; 2001 Mar; 35(5):878-84. PubMed ID: 11351530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An integrated approach for assessing the migration behavior of chlorpyrifos and carbaryl in the unsaturated soil zone.
    Latini LA; Indaco MM; Aguiar MB; Monza LB; Parolo ME; Melideo CF; Savini MC; Loewy RM
    J Environ Sci Health B; 2018; 53(7):469-475. PubMed ID: 29624471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.