These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 16190203)
1. Ion implantation: effect on flux and rejection properties of NF membranes. Abitoye JO; Mukherjee JP; Jones K Environ Sci Technol; 2005 Sep; 39(17):6487-93. PubMed ID: 16190203 [TBL] [Abstract][Full Text] [Related]
2. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide. Coronell O; Mi B; Mariñas BJ; Cahill DG Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291 [TBL] [Abstract][Full Text] [Related]
3. Comparison of treatment efficiency of submerged nanofiltration membrane bioreactors using cellulose triacetate and polyamide membrane. Choi JH; Fukushi K; Yamamoto K Water Sci Technol; 2005; 51(6-7):305-12. PubMed ID: 16003990 [TBL] [Abstract][Full Text] [Related]
4. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
5. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection. Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838 [TBL] [Abstract][Full Text] [Related]
6. Reverse osmosis membrane rejection for ersatz space mission wastewaters. Yoon Y; Lueptow RM Water Res; 2005 Sep; 39(14):3298-308. PubMed ID: 16005043 [TBL] [Abstract][Full Text] [Related]
7. Adsorptive removal of phenolic compounds using cellulose acetate phthalate-alumina nanoparticle mixed matrix membrane. Mukherjee R; De S J Hazard Mater; 2014 Jan; 265():8-19. PubMed ID: 24333710 [TBL] [Abstract][Full Text] [Related]
8. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Shao J; Hou J; Song H Water Res; 2011 Jan; 45(2):473-82. PubMed ID: 20863548 [TBL] [Abstract][Full Text] [Related]
9. Performance characterization of nanofiltration membranes based on rigid star amphiphiles. Suzuki T; Lu Y; Zhang W; Moore JS; Mariñas BJ Environ Sci Technol; 2007 Sep; 41(17):6246-52. PubMed ID: 17937310 [TBL] [Abstract][Full Text] [Related]
10. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
11. [Comparison of the effect of solution environment on humic acid removal behavior with charged and traditional neutral ultrafiltration membranes]. Hou J; Shao JH; He YL Huan Jing Ke Xue; 2010 Jun; 31(6):1518-24. PubMed ID: 20698266 [TBL] [Abstract][Full Text] [Related]
12. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications. Xie M; Nghiem LD; Price WE; Elimelech M Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822 [TBL] [Abstract][Full Text] [Related]
13. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO Gebru KA; Das C Chemosphere; 2018 Jan; 191():673-684. PubMed ID: 29078191 [TBL] [Abstract][Full Text] [Related]
14. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Yu W; Liu T; Crawshaw J; Liu T; Graham N Water Res; 2018 Aug; 139():353-362. PubMed ID: 29665507 [TBL] [Abstract][Full Text] [Related]
15. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Lin YL; Chiou JH; Lee CH J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524 [TBL] [Abstract][Full Text] [Related]
16. Effect of surface modification of microfiltration membrane on capture of toxic heavy metal ions. Madaeni SS; Heidary F Environ Technol; 2012; 33(4-6):393-9. PubMed ID: 22629610 [TBL] [Abstract][Full Text] [Related]
17. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. Chan WF; Chen HY; Surapathi A; Taylor MG; Shao X; Marand E; Johnson JK ACS Nano; 2013 Jun; 7(6):5308-19. PubMed ID: 23705642 [TBL] [Abstract][Full Text] [Related]
18. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes. Chen X; Zhao Y; Moutinho J; Shao J; Zydney AL; He Y J Hazard Mater; 2015 Mar; 284():58-64. PubMed ID: 25463218 [TBL] [Abstract][Full Text] [Related]
19. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Sun SP; Hatton TA; Chung TS Environ Sci Technol; 2011 May; 45(9):4003-9. PubMed ID: 21456576 [TBL] [Abstract][Full Text] [Related]
20. Effects of natural organic matter and ionic species on membrane surface charge. Shim Y; Lee HJ; Lee S; Moon SH; Cho J Environ Sci Technol; 2002 Sep; 36(17):3864-71. PubMed ID: 12322762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]