These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 16190203)

  • 21. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water.
    Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM
    Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of Cellulose Nanocrystals (CNCs) into the Polyamide Layer of Thin-Film Composite (TFC) Nanofiltration Membranes for Enhanced Separation Performance and Antifouling Properties.
    Bai L; Liu Y; Bossa N; Ding A; Ren N; Li G; Liang H; Wiesner MR
    Environ Sci Technol; 2018 Oct; 52(19):11178-11187. PubMed ID: 30175584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.
    Sanyal O; Lee I
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions.
    Bera A; Trivedi JS; Kumar SB; Chandel AKS; Haldar S; Jewrajka SK
    J Hazard Mater; 2018 Feb; 343():86-97. PubMed ID: 28946135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanofiltration membrane fouling by oppositely charged macromolecules: investigation on flux behavior, foulant mass deposition, and solute rejection.
    Wang YN; Tang CY
    Environ Sci Technol; 2011 Oct; 45(20):8941-7. PubMed ID: 21928796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of model dyes on charged UF membranes: Experiment and simulation.
    Ding J; Pu L; Zou D; Cao M; Shan C; Zhang Q; Gao G; Pan B
    Chemosphere; 2020 Feb; 240():124940. PubMed ID: 31574446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.
    Liu YL; Wang XM; Yang HW; Xie YF
    Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of surfactant modified ultrafiltration for perchlorate (Cl(O)(4-)) removal.
    Yoon J; Yoon Y; Amy G; Cho J; Foss D; Kim TH
    Water Res; 2003 May; 37(9):2001-12. PubMed ID: 12691884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane--mechanisms and implications.
    Do VT; Tang CY; Reinhard M; Leckie JO
    Environ Sci Technol; 2012 Dec; 46(24):13184-92. PubMed ID: 23214945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration.
    Gong YW; Zhang HX; Cheng XN
    Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.
    Freger V
    Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density.
    Zhang H; Quan X; Fan X; Yi G; Chen S; Yu H; Chen Y
    Environ Sci Technol; 2019 Jan; 53(2):868-877. PubMed ID: 30540165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of protein charge ladders to study electrostatic interactions during protein ultrafiltration.
    Ebersold MF; Zydney AL
    Biotechnol Bioeng; 2004 Jan; 85(2):166-76. PubMed ID: 14704999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Chemical Cleaning on Physicochemical Characteristics and Ion Rejection by Thin Film Composite Nanofiltration Membranes.
    Wadekar SS; Wang Y; Lokare OR; Vidic RD
    Environ Sci Technol; 2019 Sep; 53(17):10166-10176. PubMed ID: 31369248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements.
    Tang CY; Kwon YN; Leckie JO
    Environ Sci Technol; 2007 Feb; 41(3):942-9. PubMed ID: 17328207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes.
    Koyuncu I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Aug; 37(7):1347-59. PubMed ID: 15328697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups.
    Mo Y; Tiraferri A; Yip NY; Adout A; Huang X; Elimelech M
    Environ Sci Technol; 2012 Dec; 46(24):13253-61. PubMed ID: 23205860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms.
    Li Q; Elimelech M
    Environ Sci Technol; 2004 Sep; 38(17):4683-93. PubMed ID: 15461180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.