These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16190218)

  • 1. Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange method.
    Han S; Gill GA
    Environ Sci Technol; 2005 Sep; 39(17):6607-15. PubMed ID: 16190218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with "reducible Hg" titrations.
    Lamborg CH; Tseng CM; Fitzgerald WF; Balcom PH; Hammerschmidt CR
    Environ Sci Technol; 2003 Aug; 37(15):3316-22. PubMed ID: 12966976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing ligand exchange-solid phase extraction method for the determination of the complexation of dissolved inorganic mercury (II) in natural waters.
    Black FJ; Bruland KW; Flegal AR
    Anal Chim Acta; 2007 Aug; 598(2):318-33. PubMed ID: 17719908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong hg(II) complexation in municipal wastewater effluent and surface waters.
    Hsu H; Sedlak DL
    Environ Sci Technol; 2003 Jun; 37(12):2743-9. PubMed ID: 12854714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
    Lee S; Han S; Gill GA
    J Environ Monit; 2011 Jun; 13(6):1703-8. PubMed ID: 21584306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt-marsh areas as copper complexing ligand sources to estuarine and coastal systems.
    Santos-Echeandía J; Caetano M; Laglera LM; Vale C
    Chemosphere; 2013 Jan; 90(2):772-81. PubMed ID: 23111172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submarine groundwater discharge of total mercury and monomethylmercury to central California coastal waters.
    Black FJ; Paytan A; Knee KL; De Sieyes NR; Ganguli PM; Gray E; Flegal AR
    Environ Sci Technol; 2009 Aug; 43(15):5652-9. PubMed ID: 19731658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong copper-binding behavior of terrestrial humic substances in seawater.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.
    Ndungu K
    Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The measurement of organically complexed FeII in natural waters using competitive ligand reverse titration.
    Statham PJ; Jacobson Y; van den Berg CM
    Anal Chim Acta; 2012 Sep; 743():111-6. PubMed ID: 22882830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment.
    Miller CL; Southworth G; Brooks S; Liang L; Gu B
    Environ Sci Technol; 2009 Nov; 43(22):8548-53. PubMed ID: 20028050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique.
    Dong W; Bian Y; Liang L; Gu B
    Environ Sci Technol; 2011 Apr; 45(8):3576-83. PubMed ID: 21417367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France).
    Sharif A; Monperrus M; Tessier E; Bouchet S; Pinaly H; Rodriguez-Gonzalez P; Maron P; Amouroux D
    Sci Total Environ; 2014 Oct; 496():701-713. PubMed ID: 25091142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of microorganism content in suspended particles on the particle-water partitioning of mercury in semi-enclosed coastal waters.
    Jang J; Kim H; Han S
    Sci Total Environ; 2014 Feb; 470-471():1558-64. PubMed ID: 24120117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?
    Bone SE; Charette MA; Lamborg CH; Gonneea ME
    Environ Sci Technol; 2007 May; 41(9):3090-5. PubMed ID: 17539509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of mercury(II) to dissolved organic matter: the role of the mercury-to-DOM concentration ratio.
    Haitzer M; Aiken GR; Ryan JN
    Environ Sci Technol; 2002 Aug; 36(16):3564-70. PubMed ID: 12214650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of submarine groundwater discharge in the coastal fluxes of mercury in Hampyeong Bay, Yellow Sea.
    Rahman MM; Lee YG; Kim G; Lee K; Han S
    Chemosphere; 2013 Apr; 91(3):320-7. PubMed ID: 23276461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing trace metal contamination and organic matter in the brackish lakes as the major source of potable water.
    Cuculić V; Cukrov N; Kwokal Ž; Strmečki S; Plavšić M
    Environ Geochem Health; 2018 Feb; 40(1):489-503. PubMed ID: 28293748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical characteristics of dissolved mercury in the pore water of Minamata Bay sediments.
    Matsuyama A; Yano S; Taninaka T; Kindaichi M; Sonoda I; Tada A; Akagi H
    Mar Pollut Bull; 2018 Apr; 129(2):503-511. PubMed ID: 29055562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise Reduction Approach Reveals Mercury Competitive Binding and Exchange Reactions within Natural Organic Matter and Mixed Organic Ligands.
    Liang X; Lu X; Zhao J; Liang L; Zeng EY; Gu B
    Environ Sci Technol; 2019 Sep; 53(18):10685-10694. PubMed ID: 31415168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.