These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16190223)

  • 1. Sulfide species as a sink for mercury in lake sediments.
    Wolfenden S; Charnock JM; Hilton J; Livens FR; Vaughan DJ
    Environ Sci Technol; 2005 Sep; 39(17):6644-8. PubMed ID: 16190223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N; Lang CY; Chen YW; Wang M
    Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributions of total mercury and methylmercury in surface sediments and fishes in Lake Shihwa, Korea.
    Oh S; Kim MK; Yi SM; Zoh KD
    Sci Total Environ; 2010 Feb; 408(5):1059-68. PubMed ID: 19945147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased accumulation of sulfur in lake sediments of the high arctic.
    Drevnick PE; Muir DC; Lamborg CH; Horgan MJ; Canfield DE; Boyle JF; Rose NL
    Environ Sci Technol; 2010 Nov; 44(22):8415-21. PubMed ID: 20973547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution, fractionation and risk assessment of mercury in surficial sediments of Nansi Lake, China.
    Zhang W; Cao F; Yang L; Dai J; Pang X
    Environ Geochem Health; 2018 Feb; 40(1):115-125. PubMed ID: 28251476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.
    Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW
    Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between sediment clay minerals and total mercury.
    Kongchum M; Hudnall WH; DeLaune RD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):534-9. PubMed ID: 21469014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India.
    Chakraborty P; Sharma B; Babu PV; Yao KM; Jaychandran S
    Mar Pollut Bull; 2014 Feb; 79(1-2):342-7. PubMed ID: 24355570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation and total organic carbon in marine sediments along the Mediterranean coast of Israel.
    Shoham-Frider E; Azran S; Kress N
    Arch Environ Contam Toxicol; 2012 Nov; 63(4):495-502. PubMed ID: 22961217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sedimentation and seasonal variation of hexachlorocyclohexanes in sediments in a eutrophic lake, China.
    Chi J; Wang QY; Huang JJ; Huang GL
    J Environ Sci Health B; 2008 Sep; 43(7):611-6. PubMed ID: 18803116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of heavy metals in sediments from the Gulf of Paria, Trinidad.
    Norville W
    Rev Biol Trop; 2005 May; 53 Suppl 1():33-40. PubMed ID: 17465142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury alkylation in freshwater sediments from Scottish canals.
    Cavoura O; Brombach CC; Cortis R; Davidson CM; Gajdosechova Z; Keenan HE; Krupp EM
    Chemosphere; 2017 Sep; 183():27-35. PubMed ID: 28531556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscale characterization of sulfur speciation in lake sediments.
    Zeng T; Arnold WA; Toner BM
    Environ Sci Technol; 2013 Feb; 47(3):1287-96. PubMed ID: 23282039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China.
    Yin H; Fan C
    Arch Environ Contam Toxicol; 2011 May; 60(4):565-75. PubMed ID: 20665211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California.
    Meador JP; Ernest DW; Kagley AN
    Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic mercury binding with different sulfur species in anoxic sediments and their gut juice extractions.
    Zhong H; Wang WX
    Environ Toxicol Chem; 2009 Sep; 28(9):1851-7. PubMed ID: 19366277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size and density distribution of sulfide-producing microniches in lake sediments.
    Widerlund A; Davison W
    Environ Sci Technol; 2007 Dec; 41(23):8044-9. PubMed ID: 18186335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.
    Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.