BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16190234)

  • 1. Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis.
    Cohan DS; Hakami A; Hu Y; Russell AG
    Environ Sci Technol; 2005 Sep; 39(17):6739-48. PubMed ID: 16190234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia).
    Toro MV; Cremades LV; Calbó J
    Chemosphere; 2006 Oct; 65(5):881-8. PubMed ID: 16631888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the effects of VOC/NOx emissions on ozone synthesis in the cascadia airshed of the Pacific Northwest.
    Barna M; Lamb B; Westberg H
    J Air Waste Manag Assoc; 2001 Jul; 51(7):1021-34. PubMed ID: 15658221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.
    Mendoza-Dominguez A; Wilkinson JG; Yang YJ; Russell AG
    J Air Waste Manag Assoc; 2000 Jan; 50(1):21-31. PubMed ID: 10680362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of ozone precursors in a complex industrial terrain by using multiscale-nested air quality models with fine spatial resolution (1 km2).
    Jiménez P; Parra R; Baldasano JM
    J Air Waste Manag Assoc; 2005 Aug; 55(8):1085-99. PubMed ID: 16187579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model.
    Dunker AM; Yarwood G; Ortmann JP; Wilson GM
    Environ Sci Technol; 2002 Jul; 36(13):2953-64. PubMed ID: 12144273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allocating anthropogenic pollutant emissions over space: application to ozone pollution management.
    Diem JE; Comrie AC
    J Environ Manage; 2001 Dec; 63(4):425-47. PubMed ID: 11826724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of population density and temporal variations in emissions on the air duality benefits of NOx emission trading.
    Nobel CE; McDonald-Buller EC; Kimura Y; Lumbley KE; Allen DT
    Environ Sci Technol; 2002 Aug; 36(16):3465-73. PubMed ID: 12214636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effect of weekday-weekend differences in motor vehicle emissions on photochemical air pollution in central California.
    Marr LC; Harley RA
    Environ Sci Technol; 2002 Oct; 36(19):4099-106. PubMed ID: 12380081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of ozone-nitrogen oxides-volatile organic compound sensitivity of Cincinnati, Ohio.
    Torres-Jardón R; Keener TC
    J Air Waste Manag Assoc; 2006 Mar; 56(3):322-33. PubMed ID: 16573195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of uncertainty in hourly utility NOx emissions through a photochemical grid air quality model: a case study for the Charlotte, NC, modeling domain.
    Abdel-Aziz AM; Frey HC
    Environ Sci Technol; 2004 Apr; 38(7):2153-60. PubMed ID: 15112819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions.
    Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R
    J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric chlorine chemistry in southeast Texas: impacts on ozone formation and control.
    Chang S; Allen DT
    Environ Sci Technol; 2006 Jan; 40(1):251-62. PubMed ID: 16433359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined approach for the evaluation of a volatile organic compound emissions inventory.
    Choi YJ; Calabrese RV; Ehrman SH; Dickerson RR; Stehr JW
    J Air Waste Manag Assoc; 2006 Feb; 56(2):169-78. PubMed ID: 16568800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences between weekday and weekend air pollutant levels in southern California.
    Blanchard CL; Tanenbaum SJ
    J Air Waste Manag Assoc; 2003 Jul; 53(7):816-28. PubMed ID: 12880070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.
    Tong DQ; Muller NZ; Kan H; Mendelsohn RO
    Environ Int; 2009 Nov; 35(8):1109-17. PubMed ID: 19656569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.
    Cai C; Kelly JT; Avise JC; Kaduwela AP; Stockwell WR
    J Air Waste Manag Assoc; 2011 May; 61(5):559-72. PubMed ID: 21608496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precursor reductions and ground-level ozone in the Continental United States.
    Hidy GM; Blanchard CL
    J Air Waste Manag Assoc; 2015 Oct; 65(10):1261-82. PubMed ID: 26252366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity analysis of ground-level ozone concentration to emission changes in two urban regions of southeast Texas.
    Lin CJ; Ho TC; Chu HW; Yang H; Chandru S; Krishnarajanagar N; Chiou P; Hopper JR
    J Environ Manage; 2005 Jun; 75(4):315-23. PubMed ID: 15854725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.