BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16190440)

  • 1. Simultaneous correction of the influence of skin color and fat on tissue spectroscopy by use of a two-distance fiber-optic probe and orthogonalization technique.
    Yang Y; Landry MR; Soyemi OO; Shear MA; Anunciacion DS; Soller BR
    Opt Lett; 2005 Sep; 30(17):2269-71. PubMed ID: 16190440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system.
    Steiner H; Jakusch M; Kraft M; Karlowatz M; Baumann T; Niessner R; Konz W; Brandenburg A; Michel K; Boussard-Plédel C; Bureau B; Lucas J; Reichlin Y; Katzir A; Fleischmann N; Staubmann K; Allabashi R; Bayona JM; Mizaikoff B
    Appl Spectrosc; 2003 Jun; 57(6):607-13. PubMed ID: 14658691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared spectroscopy: a tool for monitoring submerged fermentation processes using an immersion optical-fiber probe.
    Tamburini E; Vaccari G; Tosi S; Trilli A
    Appl Spectrosc; 2003 Feb; 57(2):132-8. PubMed ID: 14610948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection.
    Matsuura Y; Kino S; Katagiri T
    Appl Opt; 2009 Oct; 48(28):5396-400. PubMed ID: 19798380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Fiber Optic and Conduit Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Setup for In-Line Fermentation Monitoring.
    Koch C; Posch AE; Herwig C; Lendl B
    Appl Spectrosc; 2016 Dec; 70(12):1965-1973. PubMed ID: 27864445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.
    Wood J; Turner PH
    Appl Spectrosc; 2003 Mar; 57(3):293-8. PubMed ID: 14658621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
    Schwarz RA; Arifler D; Chang SK; Pavlova I; Hussain IA; Mack V; Knight B; Richards-Kortum R; Gillenwater AM
    Opt Lett; 2005 May; 30(10):1159-61. PubMed ID: 15945140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin color correction for tissue spectroscopy: demonstration of a novel approach with tissue-mimicking phantoms.
    Soyemi OO; Landry MR; Yang Y; Idwasi PO; Soller BR
    Appl Spectrosc; 2005 Feb; 59(2):237-44. PubMed ID: 15720765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New frontiers for mid-infrared sensors: towards deep sea monitoring with a submarine FT-IR sensor system.
    Kraft M; Jakusch M; Karlowatz M; Katzir A; Mizaikoff B
    Appl Spectrosc; 2003 Jun; 57(6):591-9. PubMed ID: 14658689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy.
    Kino S; Matsuura Y
    Appl Spectrosc; 2007 Dec; 61(12):1334-7. PubMed ID: 18198025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chemometric analysis for evaluation of early-stage cartilage degradation by infrared fiber-optic probe spectroscopy.
    Li G; Thomson M; Dicarlo E; Yang X; Nestor B; Bostrom MP; Camacho NP
    Appl Spectrosc; 2005 Dec; 59(12):1527-33. PubMed ID: 16390593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared hollow optical fiber probes for reflectance spectral imaging.
    Huang C; Kino S; Katagiri T; Matsuura Y
    Appl Opt; 2015 May; 54(14):4602-7. PubMed ID: 25967522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm.
    Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L
    Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures.
    Reif R; Amorosino MS; Calabro KW; A'Amar O; Singh SK; Bigio IJ
    J Biomed Opt; 2008; 13(1):010502. PubMed ID: 18315347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and development of a hand-held optical probe toward fluorescence diagnostic imaging.
    Jayachandran B; Ge J; Regalado S; Godavarty A
    J Biomed Opt; 2007; 12(5):054014. PubMed ID: 17994902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method.
    Giaccari P; DeschĂȘnes JD; Saucier P; Genest J; Tremblay P
    Opt Express; 2008 Mar; 16(6):4347-65. PubMed ID: 18542532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image curvature correction and cosmic removal for high-throughput dispersive Raman spectroscopy.
    Zhao J
    Appl Spectrosc; 2003 Nov; 57(11):1368-75. PubMed ID: 14658150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.