BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 16190688)

  • 1. Improving the catalytic activity of Candida antarctica lipase B by circular permutation.
    Qian Z; Lutz S
    J Am Chem Soc; 2005 Oct; 127(39):13466-7. PubMed ID: 16190688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the structural and functional consequences of circular permutation on lipase B from Candida antarctica.
    Qian Z; Fields CJ; Lutz S
    Chembiochem; 2007 Nov; 8(16):1989-96. PubMed ID: 17876754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved triglyceride transesterification by circular permuted Candida antarctica lipase B.
    Yu Y; Lutz S
    Biotechnol Bioeng; 2010 Jan; 105(1):44-50. PubMed ID: 19609971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions.
    Subinya M; Steudle AK; Jurkowski TP; Stubenrauch C
    Colloids Surf B Biointerfaces; 2015 Jul; 131():108-14. PubMed ID: 25973762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain.
    Rotticci-Mulder JC; Gustavsson M; Holmquist M; Hult K; Martinelle M
    Protein Expr Purif; 2001 Apr; 21(3):386-92. PubMed ID: 11281712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-free synthesis and multifold screening of Candida antarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots.
    Park CG; Kwon MA; Song JK; Kim DM
    Biotechnol Prog; 2011; 27(1):47-53. PubMed ID: 21312354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.
    Qian Z; Horton JR; Cheng X; Lutz S
    J Mol Biol; 2009 Oct; 393(1):191-201. PubMed ID: 19683009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-carbon bonds by hydrolytic enzymes.
    Branneby C; Carlqvist P; Magnusson A; Hult K; Brinck T; Berglund P
    J Am Chem Soc; 2003 Jan; 125(4):874-5. PubMed ID: 12537478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of alcohol treatments on the activity of lipases immobilized on methyl-modified silica aerogels.
    Gao S; Wang W; Wang Y; Luo G; Dai Y
    Bioresour Technol; 2010 Oct; 101(19):7231-8. PubMed ID: 20576560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipase-catalyzed regioselective monoacetylation of unsymmetrical 1,5-primary diols.
    Oger C; Marton Z; Brinkmann Y; Bultel-Poncé V; Durand T; Graber M; Galano JM
    J Org Chem; 2010 Mar; 75(6):1892-7. PubMed ID: 20187621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality.
    Palomo JM; Fuentes M; Fernández-Lorente G; Mateo C; Guisan JM; Fernández-Lafuente R
    Biomacromolecules; 2003; 4(1):1-6. PubMed ID: 12523838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel self-activation mechanism of Candida antarctica lipase B.
    Luan B; Zhou R
    Phys Chem Chem Phys; 2017 Jun; 19(24):15709-15714. PubMed ID: 28589990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Candida rugosa lipases: an overview.
    Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR
    Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with Candida antarctica Lipase B.
    Yao Z; Zhang L; Gao B; Cui D; Wang F; He X; Zhang JZ; Wei D
    J Chem Inf Model; 2016 Oct; 56(10):1979-1994. PubMed ID: 27529495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid.
    Schoffelen S; Lambermon MH; van Eldijk MB; van Hest JC
    Bioconjug Chem; 2008 Jun; 19(6):1127-31. PubMed ID: 18461981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of Candida antarctica lipase A using an episomaly replicating yeast plasmid.
    Sandström AG; Engström K; Nyhlén J; Kasrayan A; Bäckvall JE
    Protein Eng Des Sel; 2009 Jul; 22(7):413-20. PubMed ID: 19509064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial Activation of Candida antarctica Lipase B: Combined Evidence from Experiment and Simulation.
    Zisis T; Freddolino PL; Turunen P; van Teeseling MC; Rowan AE; Blank KG
    Biochemistry; 2015 Sep; 54(38):5969-79. PubMed ID: 26346632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis.
    Costa L; Brissos V; Lemos F; Ribeiro FR; Cabral JM
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):323-7. PubMed ID: 17940805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.