These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16190723)

  • 1. Electroenzymatic reactions. Investigation of a reductive dehalogenase by means of electrogenerated redox cosubstrates.
    Diekert G; Gugova D; Limoges B; Robert M; Savéant JM
    J Am Chem Soc; 2005 Oct; 127(39):13583-8. PubMed ID: 16190723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans: substrate specificity of the native enzyme and its corrinoid cofactor.
    Neumann A; Siebert A; Trescher T; Reinhardt S; Wohlfarth G; Diekert G
    Arch Microbiol; 2002 May; 177(5):420-6. PubMed ID: 11976751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans.
    Neumann A; Wohlfarth G; Diekert G
    J Biol Chem; 1996 Jul; 271(28):16515-9. PubMed ID: 8663199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors controlling the carbon isotope fractionation of tetra- and trichloroethene during reductive dechlorination by Sulfurospirillum ssp. and Desulfitobacterium sp. strain PCE-S.
    Cichocka D; Siegert M; Imfeld G; Andert J; Beck K; Diekert G; Richnow HH; Nijenhuis I
    FEMS Microbiol Ecol; 2007 Oct; 62(1):98-107. PubMed ID: 17908097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on tetrachloroethene respiration in Dehalospirillum multivorans.
    Miller E; Wohlfarth G; Diekert G
    Arch Microbiol; 1996 Dec; 166(6):379-87. PubMed ID: 9082914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase.
    Siebert A; Neumann A; Schubert T; Diekert G
    Arch Microbiol; 2002 Dec; 178(6):443-9. PubMed ID: 12420164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive tetrachloroethene dehalogenation in the presence of oxygen by Sulfurospirillum multivorans: physiological studies and proteome analysis.
    Gadkari J; Goris T; Schiffmann CL; Rubick R; Adrian L; Schubert T; Diekert G
    FEMS Microbiol Ecol; 2018 Jan; 94(1):. PubMed ID: 29228161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene.
    Türkowsky D; Lohmann P; Mühlenbrink M; Schubert T; Adrian L; Goris T; Jehmlich N; von Bergen M
    J Proteomics; 2019 Feb; 192():10-17. PubMed ID: 29879467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional genotyping of Sulfurospirillum spp. in mixed cultures allowed the identification of a new tetrachloroethene reductive dehalogenase.
    Buttet GF; Holliger C; Maillard J
    Appl Environ Microbiol; 2013 Nov; 79(22):6941-7. PubMed ID: 23995945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox enzymes immobilized on electrodes with solution cosubstrates. General procedure for simulation of time-resolved catalytic responses.
    Andrieux CP; Limoges B; Marchal D; Savéant JM
    Anal Chem; 2006 May; 78(9):3138-43. PubMed ID: 16643005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family.
    Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C
    J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B12 and corrinoid-based dehalogenases follow an electron transfer mechanism?
    Costentin C; Robert M; Savéant JM
    J Am Chem Soc; 2005 Sep; 127(35):12154-5. PubMed ID: 16131156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol.
    Fung JM; Morris RM; Adrian L; Zinder SH
    Appl Environ Microbiol; 2007 Jul; 73(14):4439-45. PubMed ID: 17513589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a radical mechanism of the dechlorination of chlorinated propenes mediated by the tetrachloroethene reductive dehalogenase of Sulfurospirillum muftivorans.
    Schmitz RP; Wolf J; Habel A; Neumann A; Ploss K; Svatos A; Boland W; Diekert G
    Environ Sci Technol; 2007 Nov; 41(21):7370-5. PubMed ID: 18044513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S.
    Miller E; Wohlfarth G; Diekert G
    Arch Microbiol; 1998 Jun; 169(6):497-502. PubMed ID: 9575235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1.
    van de Pas BA; Gerritse J; de Vos WM; Schraa G; Stams AJ
    Arch Microbiol; 2001 Sep; 176(3):165-9. PubMed ID: 11511863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxybenzoyl-CoA reductase: coupling kinetics and electrochemistry to derive enzyme mechanisms.
    el Kasmi A; Brachmann R; Fuchs G; Ragsdale SW
    Biochemistry; 1995 Sep; 34(37):11668-77. PubMed ID: 7547899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein film voltammetry of arsenite oxidase from the chemolithoautotrophic arsenite-oxidizing bacterium NT-26.
    Bernhardt PV; Santini JM
    Biochemistry; 2006 Mar; 45(9):2804-9. PubMed ID: 16503635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.