These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Modeling formant frequency discrimination of female vowels. Sommers MS; Kewley-Port D J Acoust Soc Am; 1996 Jun; 99(6):3770-81. PubMed ID: 8655808 [TBL] [Abstract][Full Text] [Related]
5. Formant-frequency discrimination of synthesized vowels in budgerigars (Melopsittacus undulatus) and humans. Henry KS; Amburgey KN; Abrams KS; Idrobo F; Carney LH J Acoust Soc Am; 2017 Oct; 142(4):2073. PubMed ID: 29092534 [TBL] [Abstract][Full Text] [Related]
6. On the effectiveness of whole spectral shape for vowel perception. Ito M; Tsuchida J; Yano M J Acoust Soc Am; 2001 Aug; 110(2):1141-9. PubMed ID: 11519581 [TBL] [Abstract][Full Text] [Related]
8. The perception of back vowels: centre of gravity hypothesis. Assmann PF Q J Exp Psychol A; 1991 Aug; 43(3):423-48. PubMed ID: 1775650 [TBL] [Abstract][Full Text] [Related]
9. Effects of roving level and spectral range on vowel formant discrimination. Liu C J Acoust Soc Am; 2011 Oct; 130(4):EL264-70. PubMed ID: 21974502 [TBL] [Abstract][Full Text] [Related]
10. Differential sensitivity to vowel continua in Old World monkeys (Macaca) and humans. Sinnott JM; Kreiter NA J Acoust Soc Am; 1991 May; 89(5):2421-9. PubMed ID: 1861002 [TBL] [Abstract][Full Text] [Related]
11. A multidimensional scaling analysis of vowel discrimination in humans and monkeys. Sinnott JM; Brown CH; Malik WT; Kressley RA Percept Psychophys; 1997 Nov; 59(8):1214-24. PubMed ID: 9401456 [TBL] [Abstract][Full Text] [Related]
12. Vowel discrimination in cats: thresholds for the detection of second formant changes in the vowel /epsilon/. Hienz RD; Aleszczyk CM; May BJ J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1052-8. PubMed ID: 8759958 [TBL] [Abstract][Full Text] [Related]
13. Macaque thresholds for detecting increases in intensity: effects of formant structure. Le Prell CG; Niemiec AJ; Moody DB Hear Res; 2001 Dec; 162(1-2):29-42. PubMed ID: 11707349 [TBL] [Abstract][Full Text] [Related]
14. Formant-frequency matching between sounds with different bandwidths and on different fundamental frequencies. Dissard P; Darwin CJ J Acoust Soc Am; 2001 Jul; 110(1):409-15. PubMed ID: 11508966 [TBL] [Abstract][Full Text] [Related]
15. Formant discrimination of speech and non-speech sounds for English and Chinese listeners. Liu C; Tao S; Wang W; Dong Q J Acoust Soc Am; 2012 Sep; 132(3):EL189-95. PubMed ID: 22979831 [TBL] [Abstract][Full Text] [Related]
16. Effects of phase changes in low-numbered harmonics on the internal representation of complex sounds. McKeown JD; Darwin CJ Q J Exp Psychol A; 1991 Aug; 43(3):401-21. PubMed ID: 1775649 [TBL] [Abstract][Full Text] [Related]
17. Detection and discrimination of synthetic English vowels by Old World monkeys (Cercopithecus, Macaca) and humans. Sinnott JM J Acoust Soc Am; 1989 Aug; 86(2):557-65. PubMed ID: 2768672 [TBL] [Abstract][Full Text] [Related]
18. English vowel identification and vowel formant discrimination by native Mandarin Chinese- and native English-speaking listeners: The effect of vowel duration dependence. Mi L; Tao S; Wang W; Dong Q; Guan J; Liu C Hear Res; 2016 Mar; 333():58-65. PubMed ID: 26768853 [TBL] [Abstract][Full Text] [Related]
19. Vocal individual discrimination in Japanese monkeys. Ceugniet M; Izumi A Primates; 2004 Apr; 45(2):119-28. PubMed ID: 14673661 [TBL] [Abstract][Full Text] [Related]
20. The role of spectral cues in discrimination of voice onset time differences. Soli SD J Acoust Soc Am; 1983 Jun; 73(6):2150-65. PubMed ID: 6875101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]