BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16192274)

  • 21. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of a biliverdin IXalpha reductase enzyme-cofactor complex.
    Whitby FG; Phillips JD; Hill CP; McCoubrey W; Maines MD
    J Mol Biol; 2002 Jun; 319(5):1199-210. PubMed ID: 12079357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of delta 1-pyrroline-5-carboxylate reductase from Drosophila melanogaster.
    Farmer JL; Bradshaw WS; Smith CS
    Comp Biochem Physiol B; 1979; 62(2):143-6. PubMed ID: 45549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. L-Pipecolate formation in the mammalian brain. Regional distribution of delta1-pyrroline-2-carboxylate reductase activity.
    Garweg G; von Rehren D; Hintze U
    J Neurochem; 1980 Sep; 35(3):616-21. PubMed ID: 6893842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1981 Mar; 145(3):1359-64. PubMed ID: 7009582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. delta 1-Pyrroline-5-carboxylate reductase from Baker's yeast. Purification, properties and its application in the assays of L-delta 1-pyrroline-5-carboxylate and L-ornithine in tissue.
    Matsuzawa T; Ishiguro I
    Biochim Biophys Acta; 1980 Jun; 613(2):318-23. PubMed ID: 7004492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of Thermococcus litoralis Δ
    Ferrario E; Miggiano R; Rizzi M; Ferraris DM
    Acta Crystallogr D Struct Biol; 2020 May; 76(Pt 5):496-505. PubMed ID: 32355045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structures of the quinone oxidoreductase from Thermus thermophilus HB8 and its complex with NADPH: implication for NADPH and substrate recognition.
    Shimomura Y; Kakuta Y; Fukuyama K
    J Bacteriol; 2003 Jul; 185(14):4211-8. PubMed ID: 12837796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Folate activation and catalysis in methylenetetrahydrofolate reductase from Escherichia coli: roles for aspartate 120 and glutamate 28.
    Trimmer EE; Ballou DP; Ludwig ML; Matthews RG
    Biochemistry; 2001 May; 40(21):6216-26. PubMed ID: 11371182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools.
    Marchese L; Olavarria K; Mantilla BS; Avila CC; Souza ROO; Damasceno FS; Elias MC; Silber AM
    Biochem J; 2020 May; 477(10):1827-1845. PubMed ID: 32315030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005 provides insights into the reaction mechanism of enzymes in its original family.
    Fujii T; Sato A; Okamoto Y; Yamauchi T; Kato S; Yoshida M; Oikawa T; Hata Y
    Proteins; 2016 Aug; 84(8):1029-42. PubMed ID: 27040018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disease variants of human Δ
    Patel SM; Seravalli J; Liang X; Tanner JJ; Becker DF
    Arch Biochem Biophys; 2021 May; 703():108852. PubMed ID: 33771508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli.
    Kim IK; Yim HS; Kim MK; Kim DW; Kim YM; Cha SS; Kang SO
    J Mol Biol; 2008 May; 379(2):372-84. PubMed ID: 18455185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
    Arentson BW; Luo M; Pemberton TA; Tanner JJ; Becker DF
    Biochemistry; 2014 Aug; 53(31):5150-61. PubMed ID: 25046425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression and kinetic characterization of PYCR3.
    Meeks KR; Tanner JJ
    Arch Biochem Biophys; 2023 Jan; 733():109468. PubMed ID: 36414121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrroline-5-carboxylate reductase in human erythrocytes.
    Yeh GC; Harris SC; Phang JM
    J Clin Invest; 1981 Apr; 67(4):1042-6. PubMed ID: 6894153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First crystal structure of L-lysine 6-dehydrogenase as an NAD-dependent amine dehydrogenase.
    Yoneda K; Fukuda J; Sakuraba H; Ohshima T
    J Biol Chem; 2010 Mar; 285(11):8444-53. PubMed ID: 20056607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase.
    Inagaki E; Ohshima N; Takahashi H; Kuroishi C; Yokoyama S; Tahirov TH
    J Mol Biol; 2006 Sep; 362(3):490-501. PubMed ID: 16934832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.