These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16192277)
1. MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/NAD kinase. Kawai S; Fukuda C; Mukai T; Murata K J Biol Chem; 2005 Nov; 280(47):39200-7. PubMed ID: 16192277 [TBL] [Abstract][Full Text] [Related]
2. NADP(H) phosphatase activities of archaeal inositol monophosphatase and eubacterial 3'-phosphoadenosine 5'-phosphate phosphatase. Fukuda C; Kawai S; Murata K Appl Environ Microbiol; 2007 Sep; 73(17):5447-52. PubMed ID: 17616624 [TBL] [Abstract][Full Text] [Related]
3. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Kawai S; Murata K Biosci Biotechnol Biochem; 2008 Apr; 72(4):919-30. PubMed ID: 18391451 [TBL] [Abstract][Full Text] [Related]
4. ADP-dependent glucokinase/phosphofructokinase, a novel bifunctional enzyme from the hyperthermophilic archaeon Methanococcus jannaschii. Sakuraba H; Yoshioka I; Koga S; Takahashi M; Kitahama Y; Satomura T; Kawakami R; Ohshima T J Biol Chem; 2002 Apr; 277(15):12495-8. PubMed ID: 11856730 [TBL] [Abstract][Full Text] [Related]
5. [Function and structure of NAD kinase: the key enzyme for biosynthesis of NADP (H)]. Kawai S; Fukuda C; Murata K Tanpakushitsu Kakusan Koso; 2007 Mar; 52(3):243-8. PubMed ID: 17352189 [No Abstract] [Full Text] [Related]
6. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347 [TBL] [Abstract][Full Text] [Related]
7. The phosphofructokinase-B (MJ0406) from Methanocaldococcus jannaschii represents a nucleoside kinase with a broad substrate specificity. Hansen T; Arnfors L; Ladenstein R; Schönheit P Extremophiles; 2007 Jan; 11(1):105-14. PubMed ID: 17021658 [TBL] [Abstract][Full Text] [Related]
8. Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Chen L; Roberts MF Appl Environ Microbiol; 1998 Jul; 64(7):2609-15. PubMed ID: 9647837 [TBL] [Abstract][Full Text] [Related]
9. Overexpression, purification, and characterization of the thermostable mevalonate kinase from Methanococcus jannaschii. Huang KX; Scott AI; Bennett GN Protein Expr Purif; 1999 Oct; 17(1):33-40. PubMed ID: 10497066 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Raffaelli N; Finaurini L; Mazzola F; Pucci L; Sorci L; Amici A; Magni G Biochemistry; 2004 Jun; 43(23):7610-7. PubMed ID: 15182203 [TBL] [Abstract][Full Text] [Related]
11. CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Li H; Graupner M; Xu H; White RH Biochemistry; 2003 Aug; 42(32):9771-8. PubMed ID: 12911320 [TBL] [Abstract][Full Text] [Related]
12. A thermostable platform for transcriptional regulation: the DNA-binding properties of two Lrp homologs from the hyperthermophilic archaeon Methanococcus jannaschii. Ouhammouch M; Geiduschek EP EMBO J; 2001 Jan; 20(1-2):146-56. PubMed ID: 11226165 [TBL] [Abstract][Full Text] [Related]
13. Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Laval-Martin DL; Carré IA; Barbera SJ; Edmunds LN Arch Biochem Biophys; 1990 Feb; 276(2):433-41. PubMed ID: 2154948 [TBL] [Abstract][Full Text] [Related]
14. Kinetic mechanism of fuculose-1-phosphate aldolase from the hyperthermophilic archaeon Methanococcus jannaschii. Park HC; Park JS; Choi JD; Dabrowski M; Atkins WM; Yoon MY Enzyme Microb Technol; 2012 Apr; 50(4-5):209-14. PubMed ID: 22418259 [TBL] [Abstract][Full Text] [Related]
15. Archaeal shikimate kinase, a new member of the GHMP-kinase family. Daugherty M; Vonstein V; Overbeek R; Osterman A J Bacteriol; 2001 Jan; 183(1):292-300. PubMed ID: 11114929 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Huan X; Wang X; Ning J Enzyme Microb Technol; 2012 Jul; 51(2):73-80. PubMed ID: 22664190 [TBL] [Abstract][Full Text] [Related]
17. Molecular properties, functions, and potential applications of NAD kinases. Shi F; Li Y; Li Y; Wang X Acta Biochim Biophys Sin (Shanghai); 2009 May; 41(5):352-61. PubMed ID: 19430699 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine. Chiba S; Itoh Y; Sekine S; Yokoyama S Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242 [TBL] [Abstract][Full Text] [Related]
19. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. Shi F; Kawai S; Mori S; Kono E; Murata K FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040 [TBL] [Abstract][Full Text] [Related]
20. Circadian variations in the affinities of NAD kinase and NADP phosphatase for their substrates, NAD+ and NADP+, in dividing and nondividing cells of the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Laval-Martin DL; Carré IA; Barbera SJ; Edmunds LN Chronobiol Int; 1990; 7(2):99-105. PubMed ID: 2173644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]