These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1619233)

  • 1. Coralline hydroxyapatite bone graft substitutes: radiographic evaluation.
    Sartoris DJ; Holmes RE; Resnick D
    J Foot Surg; 1992; 31(3):301-13. PubMed ID: 1619233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coralline hydroxyapatite bone graft substitutes: preliminary report of radiographic evaluation.
    Sartoris DJ; Gershuni DH; Akeson WH; Holmes RE; Resnick D
    Radiology; 1986 Apr; 159(1):133-7. PubMed ID: 3513246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.
    Kühne JH; Bartl R; Frisch B; Hammer C; Jansson V; Zimmer M
    Acta Orthop Scand; 1994 Jun; 65(3):246-52. PubMed ID: 8042473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1986 Nov; 21(11):851-7. PubMed ID: 2877959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia.
    Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C
    J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation.
    Sartoris DJ; Holmes RE; Tencer AF; Mooney V; Resnick D
    Skeletal Radiol; 1986; 15(8):635-41. PubMed ID: 3810188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coralline hydroxyapatite bone graft substitute. Preliminary report.
    Holmes R; Mooney V; Bucholz R; Tencer A
    Clin Orthop Relat Res; 1984 Sep; (188):252-62. PubMed ID: 6147218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The possible use of coralline hydroxyapatite as a bone implant.
    Light M; Kanat IO
    J Foot Surg; 1991; 30(5):472-6. PubMed ID: 1783757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rate of vascularization of coralline hydroxyapatite.
    Grenga TE; Zins JE; Bauer TW
    Plast Reconstr Surg; 1989 Aug; 84(2):245-9. PubMed ID: 2473482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coralline hydroxyapatite bone graft substitutes in a canine diaphyseal defect model: radiographic features of failed and successful union.
    Sartoris DJ; Holmes RE; Bucholz RW; Resnick D
    Skeletal Radiol; 1986; 15(8):642-7. PubMed ID: 3810189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on osteoconductive properties of a chitosan-bonded hydroxyapatite self-hardening paste.
    Kawakami T; Antoh M; Hasegawa H; Yamagishi T; Ito M; Eda S
    Biomaterials; 1992; 13(11):759-63. PubMed ID: 1391397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiographic evaluation of bone grafts.
    Nigro N; Grace D
    J Foot Ankle Surg; 1996; 35(5):378-85. PubMed ID: 8915858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects.
    Moore DC; Chapman MW; Manske D
    J Orthop Res; 1987; 5(3):356-65. PubMed ID: 3040949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures.
    Bucholz RW; Carlton A; Holmes R
    Clin Orthop Relat Res; 1989 Mar; (240):53-62. PubMed ID: 2537166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit.
    Ning Y; Wei T; Defu C; Yonggang X; Da H; Dafu C; Lei S; Zhizhong G
    J Biomed Mater Res A; 2009 Mar; 88(3):741-6. PubMed ID: 18357581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite and tricalcium phosphate bone graft substitutes.
    Bucholz RW; Carlton A; Holmes RE
    Orthop Clin North Am; 1987 Apr; 18(2):323-34. PubMed ID: 3561978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural coral exoskeleton as a bone graft substitute: a review.
    Demers C; Hamdy CR; Corsi K; Chellat F; Tabrizian M; Yahia L
    Biomed Mater Eng; 2002; 12(1):15-35. PubMed ID: 11847406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous, block hydroxyapatite as an interpositional bone graft substitute in orthognathic surgery.
    Rosen HM
    Plast Reconstr Surg; 1989 Jun; 83(6):985-90; discussion 991-3. PubMed ID: 2727171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does coralline hydroxyapatite conduct fusion in instrumented posterior spine fusion?
    Korovessis P; Repanti M; Koureas G
    Stud Health Technol Inform; 2002; 91():109-13. PubMed ID: 15457705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.