These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 16193036)
1. Robotics: self-replication from random parts. Griffith S; Goldwater D; Jacobson JM Nature; 2005 Sep; 437(7059):636. PubMed ID: 16193036 [TBL] [Abstract][Full Text] [Related]
2. Special issue featuring selected papers from the International Workshop on Bio-Inspired Robots (Nantes, France, 6-8 April 2011). Boyer F; Stefanini C; Ruffier F; Viollet S Bioinspir Biomim; 2012 Jun; 7(2):020201. PubMed ID: 22619178 [No Abstract] [Full Text] [Related]
3. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model. Tani J; Nishimoto R; Namikawa J; Ito M IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081 [TBL] [Abstract][Full Text] [Related]
5. Using hardware models to quantify sensory data acquisition across the rat vibrissal array. Gopal V; Hartmann MJ Bioinspir Biomim; 2007 Dec; 2(4):S135-45. PubMed ID: 18037723 [TBL] [Abstract][Full Text] [Related]
6. Biomechanics: robotic whiskers used to sense features. Solomon JH; Hartmann MJ Nature; 2006 Oct; 443(7111):525. PubMed ID: 17024083 [TBL] [Abstract][Full Text] [Related]
7. Make robot motions natural. LaViers A Nature; 2019 Jan; 565(7740):422-424. PubMed ID: 30664672 [No Abstract] [Full Text] [Related]
8. 2D subspaces for sparse control of high-DOF robots. Jenkins OC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2722-5. PubMed ID: 17946528 [TBL] [Abstract][Full Text] [Related]
11. TAROS 2007: Towards Autonomous Robotic Systems. Wilson M; Labrosse F; Nehmzow U; Melhuish C; Witkowski M Bioinspir Biomim; 2008 Sep; 3(3):030201. PubMed ID: 18591734 [No Abstract] [Full Text] [Related]
12. Bioinspired roft robotics: preface to the special issue. Paley DA; Majidi C; Tytell E; Wereley N Bioinspir Biomim; 2016 Mar; 11(2):020401. PubMed ID: 26963491 [No Abstract] [Full Text] [Related]
13. Artificial annelid robot driven by soft actuators. Jung K; Koo JC; Nam JD; Lee YK; Choi HR Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328 [TBL] [Abstract][Full Text] [Related]
14. Jumping robots: a biomimetic solution to locomotion across rough terrain. Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786 [TBL] [Abstract][Full Text] [Related]
15. Living Materials Herald a New Era in Soft Robotics. Appiah C; Arndt C; Siemsen K; Heitmann A; Staubitz A; Selhuber-Unkel C Adv Mater; 2019 Sep; 31(36):e1807747. PubMed ID: 31267628 [TBL] [Abstract][Full Text] [Related]
16. Real-time myoprocessors for a neural controlled powered exoskeleton arm. Cavallaro EE; Rosen J; Perry JC; Burns S IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345 [TBL] [Abstract][Full Text] [Related]
17. Meet the soft, cuddly robots of the future. Shen H Nature; 2016 Feb; 530(7588):24-6. PubMed ID: 26842040 [No Abstract] [Full Text] [Related]
18. Multi-modal locomotion: from animal to application. Lock RJ; Burgess SC; Vaidyanathan R Bioinspir Biomim; 2014 Mar; 9(1):011001. PubMed ID: 24343102 [TBL] [Abstract][Full Text] [Related]
19. Refinement and standardization of synthetic biological parts and devices. Canton B; Labno A; Endy D Nat Biotechnol; 2008 Jul; 26(7):787-93. PubMed ID: 18612302 [TBL] [Abstract][Full Text] [Related]