These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 16193138)

  • 1. Plasma-promoted dielectric heating in the microwave synthesis of spinels.
    Brooks DJ; Douthwaite RE; Gillie LJ
    Chem Commun (Camb); 2005 Oct; (38):4857-9. PubMed ID: 16193138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-induced plasma heating and synthesis: in situ temperature measurement of metal oxides and reactions to form ternary oxides.
    Chou YH; Morgan AJ; Hondow NS; Brydson R; Douthwaite RE
    Dalton Trans; 2010 Jul; 39(26):6062-6. PubMed ID: 20419192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples.
    Zhang Y; Liu R; Hu Y; Li G
    Anal Chem; 2009 Feb; 81(3):967-76. PubMed ID: 19178336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-induced plasma-promoted materials synthesis.
    Douthwaite RE
    Dalton Trans; 2007 Mar; (10):1002-5. PubMed ID: 17325774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted solvothermal synthesis of spinel AV2O4 (M = Mg, Mn, Fe, and Co).
    Gutierrez A; Manthiram A
    Inorg Chem; 2014 Aug; 53(16):8570-6. PubMed ID: 25100260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.
    Panzarella B; Tompsett G; Conner WC; Jones K
    Chemphyschem; 2007 Feb; 8(3):357-69. PubMed ID: 17253593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced flow injection leaching of rocks by focused microwave heating with in-line monitoring of released elements by inductively coupled plasma mass spectrometry.
    Silva M; Kyser K; Beauchemin D
    Anal Chim Acta; 2007 Feb; 584(2):447-54. PubMed ID: 17386636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical models for conventional and microwave thermal deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):42-8. PubMed ID: 17531148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimensionally modulated, single-crystalline LiMPO4 (M= Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage.
    Vadivel Murugan A; Muraliganth T; Ferreira PJ; Manthiram A
    Inorg Chem; 2009 Feb; 48(3):946-52. PubMed ID: 19125669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy.
    Xia L; Wang H; Wang J; Gong K; Jia Y; Zhang H; Sun M
    J Chem Phys; 2008 Oct; 129(13):134703. PubMed ID: 19045112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium(II)-catalysed cycloisomerisation of 1,6-dienes by focused microwave dielectric heating: improved rates and selectivities leading to exo-methylenecyclopentanes.
    Fairlamb IJ; McGlacken GP; Weissberger F
    Chem Commun (Camb); 2006 Mar; (9):988-90. PubMed ID: 16491185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Synthesis and Applications of MFe
    Dippong T; Levei EA; Cadar O
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34199310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave dielectric heating in synthetic organic chemistry.
    Oliver Kappe C
    Chem Soc Rev; 2008 Jun; 37(6):1127-39. PubMed ID: 18497926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave synthesis of zeolites. 2. Effect of vessel size, precursor volume, and irradiation method.
    Panzarella B; Tompsett GA; Yngvesson KS; Conner WC
    J Phys Chem B; 2007 Nov; 111(44):12657-67. PubMed ID: 17939703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon carbide passive heating elements in microwave-assisted organic synthesis.
    Kremsner JM; Kappe CO
    J Org Chem; 2006 Jun; 71(12):4651-8. PubMed ID: 16749800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature distributions within zeolite precursor solutions in the presence of microwaves.
    Gharibeh M; Tompsett G; Lu F; Auerbach SM; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Sep; 113(37):12506-20. PubMed ID: 19469480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.