BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16193143)

  • 1. Controlled synthesis of thermoresponsive polymers derived from L-proline via RAFT polymerization.
    Mori H; Iwaya H; Nagai A; Endo T
    Chem Commun (Camb); 2005 Oct; (38):4872-4. PubMed ID: 16193143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars.
    Bernard J; Hao X; Davis TP; Barner-Kowollik C; Stenzel MH
    Biomacromolecules; 2006 Jan; 7(1):232-8. PubMed ID: 16398520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-defined protein-polymer conjugates via in situ RAFT polymerization.
    Boyer C; Bulmus V; Liu J; Davis TP; Stenzel MH; Barner-Kowollik C
    J Am Chem Soc; 2007 Jun; 129(22):7145-54. PubMed ID: 17500523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution properties of a thermosensitive triblock copolymer of N-alkyl substituted acrylamides.
    Cao Y; Zhao N; Wu K; Zhu XX
    Langmuir; 2009 Feb; 25(3):1699-704. PubMed ID: 19170647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and properties of temperature-responsive chitosan by controlled free radical polymerization with chitosan-RAFT agent.
    Tang J; Hua D; Cheng J; Jiang J; Zhu X
    Int J Biol Macromol; 2008 Nov; 43(4):383-9. PubMed ID: 18761367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible addition-fragmentation chain transfer polymerization of N-isopropylacrylamide: a comparison between a conventional and a fast initiator.
    Bouchékif H; Narain R
    J Phys Chem B; 2007 Sep; 111(38):11120-6. PubMed ID: 17803302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(amino acid)-b-poly(N,N-diethylacrylamide)-b-poly(amino acid) conjugates of well-defined structure.
    Bromberg L; Levin G
    Bioconjug Chem; 1998; 9(1):40-9. PubMed ID: 9460545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive dendronized polymers with tunable lower critical solution temperatures.
    Li W; Zhang A; Schlüter AD
    Chem Commun (Camb); 2008 Nov; (43):5523-5. PubMed ID: 18997939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide.
    Zhou Y; Jiang K; Song Q; Liu S
    Langmuir; 2007 Dec; 23(26):13076-84. PubMed ID: 18027977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of degree of branching on the thermoresponsive phase transition behaviors of hyperbranched multiarm copolymers: comparison of systems with LCST transition based on coil-to-globule transition or hydrophilic-hydrophobic balance.
    Cheng H; Xie S; Zhou Y; Huang W; Yan D; Yang J; Ji B
    J Phys Chem B; 2010 May; 114(19):6291-9. PubMed ID: 20411966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amine-reactive polymers synthesized by RAFT polymerization using an azlactone functional trithiocarbonate RAFT agent.
    Ho HT; Leroux F; Pascual S; Montembault V; Fontaine L
    Macromol Rapid Commun; 2012 Oct; 33(20):1753-8. PubMed ID: 22786875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt effect on the heat-induced association behavior of gold nanoparticles coated with poly(N-isopropylacrylamide) prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization.
    Yusa S; Fukuda K; Yamamoto T; Iwasaki Y; Watanabe A; Akiyoshi K; Morishima Y
    Langmuir; 2007 Dec; 23(26):12842-8. PubMed ID: 17994778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of thermo- and pH-responsive double-hydrophilic diblock copolypeptides.
    Zhang X; Li J; Li W; Zhang A
    Biomacromolecules; 2007 Nov; 8(11):3557-67. PubMed ID: 17918895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC.
    Wikberg E; Verhage JJ; Viklund C; Irgum K
    J Sep Sci; 2009 Jun; 32(12):2008-16. PubMed ID: 19479757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights.
    Rodriguez-Emmenegger C; Schmidt BV; Sedlakova Z; Šubr V; Alles AB; Brynda E; Barner-Kowollik C
    Macromol Rapid Commun; 2011 Jul; 32(13):958-65. PubMed ID: 21648007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-assisted atom transfer radical polymerization of N-isopropylacrylamide: nature of solvent and temperature.
    Ye J; Narain R
    J Phys Chem B; 2009 Jan; 113(3):676-81. PubMed ID: 19113827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide.
    Convertine AJ; Ayres N; Scales CW; Lowe AB; McCormick CL
    Biomacromolecules; 2004; 5(4):1177-80. PubMed ID: 15244427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-induced intracellular uptake of thermoresponsive polymeric micelles.
    Akimoto J; Nakayama M; Sakai K; Okano T
    Biomacromolecules; 2009 Jun; 10(6):1331-6. PubMed ID: 19358525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization.
    Wong L; Boyer C; Jia Z; Zareie HM; Davis TP; Bulmus V
    Biomacromolecules; 2008 Jul; 9(7):1934-44. PubMed ID: 18564875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.