BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16193337)

  • 1. Kinetics of pulmonary VO2 and femoral artery blood flow and their relationship during repeated bouts of heavy exercise.
    Endo M; Okada Y; Rossiter HB; Ooue A; Miura A; Koga S; Fukuba Y
    Eur J Appl Physiol; 2005 Dec; 95(5-6):418-30. PubMed ID: 16193337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation between the time courses of femoral artery blood flow and pulmonary VO2 during repeated bouts of heavy knee extension exercise in humans.
    Fukuba Y; Ohe Y; Miura A; Kitano A; Endo M; Sato H; Miyachi M; Koga S; Fukuda O
    Exp Physiol; 2004 May; 89(3):243-53. PubMed ID: 15123559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
    Paterson ND; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 Aug; 99(2):683-90. PubMed ID: 15817720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of "priming" exercise on pulmonary O2 uptake and muscle deoxygenation kinetics during heavy-intensity cycle exercise in the supine and upright positions.
    Jones AM; Berger NJ; Wilkerson DP; Roberts CL
    J Appl Physiol (1985); 2006 Nov; 101(5):1432-41. PubMed ID: 16857860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiorespiratory kinetics and femoral artery blood velocity during dynamic knee extension exercise.
    Shoemaker JK; Hodge L; Hughson RL
    J Appl Physiol (1985); 1994 Dec; 77(6):2625-32. PubMed ID: 7896601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prior heavy-intensity exercise during single-leg knee extension on VO2 kinetics and limb blood flow.
    Paterson ND; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 Oct; 99(4):1462-70. PubMed ID: 15890756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facial cooling-induced bradycardia does not slow pulmonary V.O2 kinetics at the onset of high-intensity exercise.
    Endo M; Tauchi S; Hayashi N; Koga S; Rossiter HB; Fukuba Y
    J Appl Physiol (1985); 2003 Oct; 95(4):1623-31. PubMed ID: 12844498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of prior heavy-intensity exercise on oxygen uptake and muscle deoxygenation kinetics of a subsequent heavy-intensity cycling and knee-extension exercise.
    Cleland SM; Murias JM; Kowalchuk JM; Paterson DH
    Appl Physiol Nutr Metab; 2012 Feb; 37(1):138-48. PubMed ID: 22269026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans.
    Gerbino A; Ward SA; Whipp BJ
    J Appl Physiol (1985); 1996 Jan; 80(1):99-107. PubMed ID: 8847338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.
    Scheuermann BW; Hoelting BD; Noble ML; Barstow TJ
    J Physiol; 2001 Feb; 531(Pt 1):245-56. PubMed ID: 11179407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of oxygen uptake kinetics during knee extension and cycle exercise.
    Koga S; Poole DC; Shiojiri T; Kondo N; Fukuba Y; Miura A; Barstow TJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Jan; 288(1):R212-20. PubMed ID: 15331378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise.
    Harper AJ; Ferreira LF; Lutjemeier BJ; Townsend DK; Barstow TJ
    Exp Physiol; 2006 Jul; 91(4):661-71. PubMed ID: 16556660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prior bout of contractions speeds VO2 and blood flow on-kinetics and reduces the VO2 slow-component amplitude in canine skeletal muscle contracting in situ.
    Hernández A; McDonald JR; Lai N; Gladden LB
    J Appl Physiol (1985); 2010 May; 108(5):1169-76. PubMed ID: 20223997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of priming exercise intensity on the dynamic linearity of the pulmonary VO(2) response during heavy exercise.
    Endo M; Usui S; Fukuoka Y; Miura A; Rossiter HB; Fukuba Y
    Eur J Appl Physiol; 2004 May; 91(5-6):545-54. PubMed ID: 14648126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prior exercise speeds pulmonary O2 uptake kinetics by increases in both local muscle O2 availability and O2 utilization.
    DeLorey DS; Kowalchuk JM; Heenan AP; Dumanoir GR; Paterson DH
    J Appl Physiol (1985); 2007 Sep; 103(3):771-8. PubMed ID: 17495116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time required for the restoration of normal heavy exercise VO2 kinetics following prior heavy exercise.
    Burnley M; Doust JH; Jones AM
    J Appl Physiol (1985); 2006 Nov; 101(5):1320-7. PubMed ID: 16857864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise.
    Brittain CJ; Rossiter HB; Kowalchuk JM; Whipp BJ
    Eur J Appl Physiol; 2001 Dec; 86(2):125-34. PubMed ID: 11822471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prior arm exercise on pulmonary gas exchange kinetics during high-intensity leg exercise in humans.
    Bohnert B; Ward SA; Whipp BJ
    Exp Physiol; 1998 Jul; 83(4):557-70. PubMed ID: 9717077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-exercise acidification induced by ingestion of NH4Cl increases the magnitude of the slow component of VO2 kinetics in humans.
    Zoładź J; Duda K; Majerczak J; Emmerich J; Domański J
    J Physiol Pharmacol; 1998 Sep; 49(3):443-55. PubMed ID: 9789796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans.
    Burnley M; Doust JH; Carter H; Jones AM
    Exp Physiol; 2001 May; 86(3):417-25. PubMed ID: 11429659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.