BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 16193787)

  • 1. A new method of incorporating systematic uncertainties in intensity-modulated radiotherapy optimization.
    Yang J; Mageras GS; Spirou SV; Jackson A; Yorke E; Ling CC; Chui CS
    Med Phys; 2005 Aug; 32(8):2567-79. PubMed ID: 16193787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EUD-based margin selection in the presence of set-up uncertainties.
    Song W; Dunscombe P
    Med Phys; 2004 Apr; 31(4):849-59. PubMed ID: 15125003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria.
    Gordon JJ; Sayah N; Weiss E; Siebers JV
    Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins.
    Suzuki M; Nishimura Y; Nakamatsu K; Okumura M; Hashiba H; Koike R; Kanamori S; Shibata T
    Radiother Oncol; 2006 Mar; 78(3):283-90. PubMed ID: 16564594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse plan optimization accounting for random geometric uncertainties with a multiple instance geometry approximation (MIGA).
    McShan DL; Kessler ML; Vineberg K; Fraass BA
    Med Phys; 2006 May; 33(5):1510-21. PubMed ID: 16752585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions.
    Spalding AC; Jee KW; Vineberg K; Jablonowski M; Fraass BA; Pan CC; Lawrence TS; Haken RK; Ben-Josef E
    Med Phys; 2007 Feb; 34(2):521-9. PubMed ID: 17388169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Step IMAT and 2-Step IMRT: a geometrical approach.
    Bratengeier K
    Med Phys; 2005 Mar; 32(3):777-85. PubMed ID: 15839350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for monitor-unit-preserving adaptation of intensity modulated arc therapy techniques to the daily target-A simple comparison.
    Bratengeier K; Oechsner M; Gainey M
    Med Phys; 2012 Feb; 39(2):713-20. PubMed ID: 22320781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of optimization on surface dose in intensity modulated radiotherapy (IMRT).
    Thomas SJ; Hoole AC
    Phys Med Biol; 2004 Nov; 49(21):4919-28. PubMed ID: 15584527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of dosimetric margins in prostate IMRT treatment plans.
    Gordon JJ; Siebers JV
    Med Phys; 2008 Feb; 35(2):569-75. PubMed ID: 18383678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of clinical margins via simulation of patient setup errors in prostate IMRT treatment plans.
    Gordon JJ; Crimaldi AJ; Hagan M; Moore J; Siebers JV
    Med Phys; 2007 Jan; 34(1):202-14. PubMed ID: 17278506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric influences of rotational setup errors on head and neck carcinoma intensity-modulated radiation therapy treatments.
    Fu W; Yang Y; Yue NJ; Heron DE; Saiful Huq M
    Med Dosim; 2013; 38(2):125-32. PubMed ID: 23266161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTV-based IMPT optimization incorporating planning risk volumes vs robust optimization.
    Liu W; Frank SJ; Li X; Li Y; Zhu RX; Mohan R
    Med Phys; 2013 Feb; 40(2):021709. PubMed ID: 23387732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target miss using PTV-based IMRT compared to robust optimization via coverage probability concept in prostate cancer.
    Outaggarts Z; Wegener D; Berger B; Zips D; Paulsen F; Bleif M; Thorwarth D; Alber M; Dohm O; Müller AC
    Acta Oncol; 2020 Aug; 59(8):911-917. PubMed ID: 32436467
    [No Abstract]   [Full Text] [Related]  

  • 15. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery.
    George R; Keall PJ; Kini VR; Vedam SS; Siebers JV; Wu Q; Lauterbach MH; Arthur DW; Mohan R
    Med Phys; 2003 Apr; 30(4):552-62. PubMed ID: 12722807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming.
    D'Souza WD; Meyer RR; Shi L
    Phys Med Biol; 2004 Aug; 49(15):3465-81. PubMed ID: 15379026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMRT: improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram.
    Grigorov GN; Chow JC; Grigorov L; Jiang R; Barnett RB
    Med Phys; 2006 May; 33(5):1250-8. PubMed ID: 16752559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benefit of using biologic parameters (EUD and NTCP) in IMRT optimization for treatment of intrahepatic tumors.
    Thomas E; Chapet O; Kessler ML; Lawrence TS; Ten Haken RK
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):571-8. PubMed ID: 15890602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect.
    Song W; Battista J; Van Dyk J
    Med Phys; 2004 Nov; 31(11):3034-45. PubMed ID: 15587657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.