BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16193996)

  • 1. Magnetically actuated micromixing on an array-pattern microfluidic chip for immunoassay of human thyrotropin.
    Li C; Wang Y; Gao Y; Guo X; Gu Z
    J Nanosci Nanotechnol; 2005 Aug; 5(8):1297-300. PubMed ID: 16193996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An innovative sample-to-answer polymer lab-on-a-chip with on-chip reservoirs for the POCT of thyroid stimulating hormone (TSH).
    Jung W; Han J; Kai J; Lim JY; Sul D; Ahn CH
    Lab Chip; 2013 Dec; 13(23):4653-62. PubMed ID: 24121997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvalves actuated sandwich immunoassay on an integrated microfluidic system.
    Gao X; Jiang L; Su X; Qin J; Lin B
    Electrophoresis; 2009 Jul; 30(14):2481-7. PubMed ID: 19639569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.
    Feng Z; Zhi S; Guo L; Zhou Y; Lei C
    Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital microfluidic magnetic separation for particle-based immunoassays.
    Ng AH; Choi K; Luoma RP; Robinson JM; Wheeler AR
    Anal Chem; 2012 Oct; 84(20):8805-12. PubMed ID: 23013543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling.
    Zirath H; Peham JR; Schnetz G; Coll A; Brandhoff L; Spittler A; Vellekoop MJ; Redl H
    Biomed Microdevices; 2016 Feb; 18(1):16. PubMed ID: 26842948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples.
    Bhattacharyya A; Klapperich CM
    Biomed Microdevices; 2007 Apr; 9(2):245-51. PubMed ID: 17165125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically actuated artificial cilia for optimum mixing performance in microfluidics.
    Chen CY; Chen CY; Lin CY; Hu YT
    Lab Chip; 2013 Jul; 13(14):2834-9. PubMed ID: 23685964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated chemiluminescence immunoassay for a nonionic surfactant using a recycled spinning-pausing controlled washing procedure on a compact disc-type microfluidic platform.
    Guo S; Ishimatsu R; Nakano K; Imato T
    Talanta; 2015 Feb; 133():100-6. PubMed ID: 25435234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifunctional plasmonic-magnetic particles for an enhanced microfluidic SERS immunoassay.
    Yap LW; Chen H; Gao Y; Petkovic K; Liang Y; Si KJ; Wang H; Tang Z; Zhu Y; Cheng W
    Nanoscale; 2017 Jun; 9(23):7822-7829. PubMed ID: 28555701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel.
    Huang MZ; Yang RJ; Tai CH; Tsai CH; Fu LM
    Biomed Microdevices; 2006 Dec; 8(4):309-15. PubMed ID: 17003961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast fluorometric enumeration of E. coli using passive chip.
    Kasap EN; Doğan Ü; Çoğun F; Yıldırım E; Boyacı İH; Çetin D; Suludere Z; Tamer U; Ertaş N
    J Microbiol Methods; 2019 Sep; 164():105680. PubMed ID: 31381980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A competitive luminol chemiluminescence immunosensor based on a microfluidic chip for the determination of ractopamine.
    Wang S; Chen Q; Wei X; Wu J; Wang C; Liu J; Zhang L; Dong Y
    Electrophoresis; 2017 Jan; 38(2):368-371. PubMed ID: 27189507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence immunoassay based on microfluidic chips for α-fetoprotein.
    Fan F; Shen H; Zhang G; Jiang X; Kang X
    Clin Chim Acta; 2014 Apr; 431():113-7. PubMed ID: 24530300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.