BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 16194093)

  • 1. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction.
    Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT
    Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.
    Song J; Durrin LK; Wilkinson TA; Krontiris TG; Chen Y
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14373-8. PubMed ID: 15388847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection.
    Tatham MH; Kim S; Jaffray E; Song J; Chen Y; Hay RT
    Nat Struct Mol Biol; 2005 Jan; 12(1):67-74. PubMed ID: 15608651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
    Eisenhardt N; Chaugule VK; Pichler A
    Methods Mol Biol; 2016; 1475():67-78. PubMed ID: 27631798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative allosteric mechanisms can regulate the substrate and E2 in SUMO conjugation.
    Karaca E; Tozluoğlu M; Nussinov R; Haliloğlu T
    J Mol Biol; 2011 Mar; 406(4):620-30. PubMed ID: 21216249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.
    Matic I; Schimmel J; Hendriks IA; van Santen MA; van de Rijke F; van Dam H; Gnad F; Mann M; Vertegaal AC
    Mol Cell; 2010 Aug; 39(4):641-52. PubMed ID: 20797634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.
    Reverter D; Lima CD
    Nature; 2005 Jun; 435(7042):687-92. PubMed ID: 15931224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies.
    Saitoh N; Uchimura Y; Tachibana T; Sugahara S; Saitoh H; Nakao M
    Exp Cell Res; 2006 May; 312(8):1418-30. PubMed ID: 16688858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex.
    Sakin V; Richter SM; Hsiao HH; Urlaub H; Melchior F
    J Biol Chem; 2015 Sep; 290(39):23589-602. PubMed ID: 26251516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2.
    Gareau JR; Reverter D; Lima CD
    J Biol Chem; 2012 Feb; 287(7):4740-51. PubMed ID: 22194619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein interactions in the sumoylation cascade: lessons from X-ray structures.
    Tang Z; Hecker CM; Scheschonka A; Betz H
    FEBS J; 2008 Jun; 275(12):3003-15. PubMed ID: 18492068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of the Recombinant RanBP2 SUMO E3 Ligase Complex.
    Ritterhoff T; Das H; Hao Y; Sakin V; Flotho A; Werner A; Melchior F
    Methods Mol Biol; 2016; 1475():41-54. PubMed ID: 27631796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase.
    Werner A; Flotho A; Melchior F
    Mol Cell; 2012 May; 46(3):287-98. PubMed ID: 22464730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positively charged amino acids flanking a sumoylation consensus tetramer on the 110kDa tri-snRNP component SART1 enhance sumoylation efficiency.
    Schimmel J; Balog CI; Deelder AM; Drijfhout JW; Hensbergen PJ; Vertegaal AC
    J Proteomics; 2010 Jun; 73(8):1523-34. PubMed ID: 20346425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis.
    Li T; Evdokimov E; Shen RF; Chao CC; Tekle E; Wang T; Stadtman ER; Yang DC; Chock PB
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8551-6. PubMed ID: 15161980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
    Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN
    J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUMO assay with peptide arrays on solid support: insights into SUMO target sites.
    Schwamborn K; Knipscheer P; van Dijk E; van Dijk WJ; Sixma TK; Meloen RH; Langedijk JP
    J Biochem; 2008 Jul; 144(1):39-49. PubMed ID: 18344540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides.
    Chung TL; Hsiao HH; Yeh YY; Shia HL; Chen YL; Liang PH; Wang AH; Khoo KH; Shoei-Lung Li S
    J Biol Chem; 2004 Sep; 279(38):39653-62. PubMed ID: 15272016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides.
    Hsiao HH; Meulmeester E; Frank BT; Melchior F; Urlaub H
    Mol Cell Proteomics; 2009 Dec; 8(12):2664-75. PubMed ID: 19721078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanistic view of the role of E3 in sumoylation.
    Tozluoğlu M; Karaca E; Nussinov R; Haliloğlu T
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20865051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.