BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 16194093)

  • 21. Sumoylation of human argonaute 2 at lysine-402 regulates its stability.
    Sahin U; Lapaquette P; Andrieux A; Faure G; Dejean A
    PLoS One; 2014; 9(7):e102957. PubMed ID: 25036361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and quantitation of SUMO chains by mass spectrometry.
    Matic I; Hay RT
    Methods Mol Biol; 2012; 832():239-47. PubMed ID: 22350890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mechanistic view of the role of E3 in sumoylation.
    Tozluoğlu M; Karaca E; Nussinov R; Haliloğlu T
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20865051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SUMO: getting it on.
    Anckar J; Sistonen L
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1409-13. PubMed ID: 18031233
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software.
    Pedrioli PG; Raught B; Zhang XD; Rogers R; Aitchison J; Matunis M; Aebersold R
    Nat Methods; 2006 Jul; 3(7):533-9. PubMed ID: 16791211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A stable chemical SUMO1-Ubc9 conjugate specifically binds as a thioester mimic to the RanBP2-E3 ligase complex.
    Sommer S; Ritterhoff T; Melchior F; Mootz HD
    Chembiochem; 2015 May; 16(8):1183-9. PubMed ID: 25917782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type.
    Pichler A; Knipscheer P; Saitoh H; Sixma TK; Melchior F
    Nat Struct Mol Biol; 2004 Oct; 11(10):984-91. PubMed ID: 15378033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Entropy-driven mechanism of an E3 ligase.
    Truong K; Su Y; Song J; Chen Y
    Biochemistry; 2011 Jun; 50(25):5757-66. PubMed ID: 21568279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performing in vitro sumoylation reactions using recombinant enzymes.
    Werner A; Moutty MC; Möller U; Melchior F
    Methods Mol Biol; 2009; 497():187-99. PubMed ID: 19107418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A
    J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin.
    Klein UR; Haindl M; Nigg EA; Muller S
    Mol Biol Cell; 2009 Jan; 20(1):410-8. PubMed ID: 18946085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamin interacts with members of the sumoylation machinery.
    Mishra RK; Jatiani SS; Kumar A; Simhadri VR; Hosur RV; Mittal R
    J Biol Chem; 2004 Jul; 279(30):31445-54. PubMed ID: 15123615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis.
    Kim DH; Kwon S; Byun S; Xiao Z; Park S; Wu SY; Chiang CM; Kemper B; Kemper JK
    Nat Commun; 2016 Jul; 7():12179. PubMed ID: 27412403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes.
    Ritterhoff T; Das H; Hofhaus G; Schröder RR; Flotho A; Melchior F
    Nat Commun; 2016 May; 7():11482. PubMed ID: 27160050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4.
    González-Prieto R; Cuijpers SA; Kumar R; Hendriks IA; Vertegaal AC
    Cell Cycle; 2015; 14(12):1859-72. PubMed ID: 25895136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High mobility group nucleosomal binding domain 2 (HMGN2) SUMOylation by the SUMO E3 ligase PIAS1 decreases the binding affinity to nucleosome core particles.
    Wu J; Kim S; Kwak MS; Jeong JB; Min HJ; Yoon HG; Ahn JH; Shin JS
    J Biol Chem; 2014 Jul; 289(29):20000-11. PubMed ID: 24872413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies.
    Wohlschlegel JA; Johnson ES; Reed SI; Yates JR
    J Proteome Res; 2006 Apr; 5(4):761-70. PubMed ID: 16602682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of sites of ubiquitination in proteins: a fourier transform ion cyclotron resonance mass spectrometry approach.
    Cooper HJ; Heath JK; Jaffray E; Hay RT; Lam TT; Marshall AG
    Anal Chem; 2004 Dec; 76(23):6982-8. PubMed ID: 15571350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms in SUMO conjugation.
    Varejão N; Lascorz J; Li Y; Reverter D
    Biochem Soc Trans; 2020 Feb; 48(1):123-135. PubMed ID: 31872228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method of mapping protein sumoylation sites by mass spectrometry using a modified small ubiquitin-like modifier 1 (SUMO-1) and a computational program.
    Knuesel M; Cheung HT; Hamady M; Barthel KK; Liu X
    Mol Cell Proteomics; 2005 Oct; 4(10):1626-36. PubMed ID: 16020427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.