These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 16194105)
1. Insulin oxidation and determination at carbon electrodes. Zhang M; Mullens C; Gorski W Anal Chem; 2005 Oct; 77(19):6396-401. PubMed ID: 16194105 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Zhang M; Smith A; Gorski W Anal Chem; 2004 Sep; 76(17):5045-50. PubMed ID: 15373440 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical sensing based on redox mediation at carbon nanotubes. Zhang M; Gorski W Anal Chem; 2005 Jul; 77(13):3960-5. PubMed ID: 15987097 [TBL] [Abstract][Full Text] [Related]
4. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Wang J; Tangkuaram T; Loyprasert S; Vazquez-Alvarez T; Veerasai W; Kanatharana P; Thavarungkul P Anal Chim Acta; 2007 Jan; 581(1):1-6. PubMed ID: 17386417 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. Zhang M; Gorski W J Am Chem Soc; 2005 Feb; 127(7):2058-9. PubMed ID: 15713079 [TBL] [Abstract][Full Text] [Related]
6. Amperometric sulfite sensor based on multiwalled carbon nanotubes/ferrocene-branched chitosan composites. Zhou H; Yang W; Sun C Talanta; 2008 Oct; 77(1):366-71. PubMed ID: 18804647 [TBL] [Abstract][Full Text] [Related]
7. Hormone glucagon: electrooxidation and determination at carbon nanotubes. Karra S; Griffith WP; Kennedy RT; Gorski W Analyst; 2016 Apr; 141(8):2405-11. PubMed ID: 26937496 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes. Deo RP; Lawrence NS; Wang J Analyst; 2004 Nov; 129(11):1076-81. PubMed ID: 15508037 [TBL] [Abstract][Full Text] [Related]
9. Picomolar detection of insulin at renewable nickel powder-doped carbon composite electrode. Salimi A; Roushani M; Soltanian S; Hallaj R Anal Chem; 2007 Oct; 79(19):7431-8. PubMed ID: 17715992 [TBL] [Abstract][Full Text] [Related]
10. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Zhu L; Zhai J; Yang R; Tian C; Guo L Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential. Kumar SA; Chen SM Anal Chim Acta; 2007 May; 592(1):36-44. PubMed ID: 17499068 [TBL] [Abstract][Full Text] [Related]
12. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Liu G; Lin Y Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058 [TBL] [Abstract][Full Text] [Related]
13. Amperometric detection of insulin at renewable sol-gel derived carbon ceramic electrode modified with nickel powder and potassium octacyanomolybdate(IV). Salimi A; Roushani M; Haghighi B; Soltanian S Biosens Bioelectron; 2006 Aug; 22(2):220-6. PubMed ID: 16931295 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation. Higgins SR; Foerster D; Cheung A; Lau C; Bretschger O; Minteer SD; Nealson K; Atanassov P; Cooney MJ Enzyme Microb Technol; 2011 May; 48(6-7):458-65. PubMed ID: 22113017 [TBL] [Abstract][Full Text] [Related]
15. Amperometric determination of bovine insulin based on synergic action of carbon nanotubes and cobalt hexacyanoferrate nanoparticles stabilized by EDTA. Qu F; Yang M; Lu Y; Shen G; Yu R Anal Bioanal Chem; 2006 Sep; 386(2):228-34. PubMed ID: 16865333 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes. Maldonado S; Morin S; Stevenson KJ Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Fanjul-Bolado P; Lamas-Ardisana PJ; Hernández-Santos D; Costa-García A Anal Chim Acta; 2009 Apr; 638(2):133-8. PubMed ID: 19327451 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical monitoring of indicator-free DNA hybridization by carbon nanotubes-chitosan modified disposable graphite sensors. Erdem A; Muti M; Karadeniz H; Congur G; Canavar E Colloids Surf B Biointerfaces; 2012 Jun; 95():222-8. PubMed ID: 22459926 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Pumera M; Merkoçi A; Alegret S Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]