These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16194279)

  • 21. Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis.
    Quartararo CE; Hazra S; Hadi T; Blanchard JS
    Biochemistry; 2013 Mar; 52(10):1765-75. PubMed ID: 23409873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase.
    Argyrou A; Blanchard JS
    Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of a highly NADP+-specific isocitrate dehydrogenase.
    Sidhu NS; Delbaere LT; Sheldrick GM
    Acta Crystallogr D Biol Crystallogr; 2011 Oct; 67(Pt 10):856-69. PubMed ID: 21931217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical characterization of isocitrate dehydrogenase from Methylococcus capsulatus reveals a unique NAD+-dependent homotetrameric enzyme.
    Stokke R; Madern D; Fedøy AE; Karlsen S; Birkeland NK; Steen IH
    Arch Microbiol; 2007 May; 187(5):361-70. PubMed ID: 17160675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic studies on mycobacteria. III. Demonstration of key enzymes of TCA cycle in M. leprae.
    Katoch VM; Sharma VD; Kannan KB; Datta AK; Shivannavar CT; Bharadwaj VP
    Indian J Lepr; 1987; 59(2):152-7. PubMed ID: 3309085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi.
    Islam MA; Tchigvintsev A; Yim V; Savchenko A; Yakunin AF; Mahadevan R; Edwards EA
    Microb Biotechnol; 2016 Jan; 9(1):47-60. PubMed ID: 26374290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum.
    Chen R; Yang H
    Arch Biochem Biophys; 2000 Nov; 383(2):238-45. PubMed ID: 11185559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional shikimate dehydrogenase from Mycobacterium tuberculosis H37Rv: purification and characterization.
    Fonseca IO; Magalhães ML; Oliveira JS; Silva RG; Mendes MA; Palma MS; Santos DS; Basso LA
    Protein Expr Purif; 2006 Apr; 46(2):429-37. PubMed ID: 16298142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of a functionally active Mycobacterium tuberculosis prephenate dehydrogenase.
    Xu S; Yang Y; Jin R; Zhang M; Wang H
    Protein Expr Purif; 2006 Oct; 49(2):151-8. PubMed ID: 16889979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant.
    Hurley JH; Chen R; Dean AM
    Biochemistry; 1996 May; 35(18):5670-8. PubMed ID: 8639526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligands of the Mn2+ bound to porcine mitochondrial NADP-dependent isocitrate dehydrogenase, as assessed by mutagenesis.
    Huang YC; Grodsky NB; Kim TK; Colman RF
    Biochemistry; 2004 Mar; 43(10):2821-8. PubMed ID: 15005617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv.
    Urquhart BL; Cordwell SJ; Humphery-Smith I
    Biochem Biophys Res Commun; 1998 Dec; 253(1):70-9. PubMed ID: 9875222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two Different Isocitrate Dehydrogenases from
    Chen X; Wei W; Xiong W; Wu S; Wu Q; Wang P; Zhu G
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834433
    [No Abstract]   [Full Text] [Related]  

  • 34. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets.
    Singh VK; Ghosh I
    Theor Biol Med Model; 2006 Aug; 3():27. PubMed ID: 16887020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases.
    Kalinina OV; Gelfand MS
    Proteins; 2006 Sep; 64(4):1001-9. PubMed ID: 16767773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular insights and functional analysis of isocitrate dehydrogenase in two gram-negative pathogenic bacteria.
    Xiong W; Su R; Han X; Zhu M; Tang H; Huang S; Wang P; Zhu G
    World J Microbiol Biotechnol; 2024 Oct; 40(11):357. PubMed ID: 39425873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical and functional characterization of triosephosphate isomerase from Mycobacterium tuberculosis H37Rv.
    Mathur D; Malik G; Garg LC
    FEMS Microbiol Lett; 2006 Oct; 263(2):229-35. PubMed ID: 16978361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination.
    Geluk A; Lin MY; van Meijgaarden KE; Leyten EM; Franken KL; Ottenhoff TH; Klein MR
    Infect Immun; 2007 Jun; 75(6):2914-21. PubMed ID: 17387166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Kinetic characteristics of NADP-dependent isocitrate dehydrogenases].
    Gulyĭ MF; Shevchenko MI
    Ukr Biokhim Zh; 1973; 45(5):515-23. PubMed ID: 4151434
    [No Abstract]   [Full Text] [Related]  

  • 40. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis.
    Gould TA; van de Langemheen H; Muñoz-Elías EJ; McKinney JD; Sacchettini JC
    Mol Microbiol; 2006 Aug; 61(4):940-7. PubMed ID: 16879647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.