These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 16194574)

  • 21. Wound fiberglass depth filters as a less expensive approach for the concentration of viruses from water.
    Payment P; Trudel M
    Can J Microbiol; 1988 Mar; 34(3):271-2. PubMed ID: 2843272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of enterovirus recovery in surface water by different adsorption and elution procedures.
    Hsu BM; Chen CH; Kung CM; Wan MT; Shen SM
    Chemosphere; 2007 Jan; 66(5):964-9. PubMed ID: 16875713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of electropositive filtration for recovering norovirus in water.
    Lee H; Kim M; Paik SY; Lee CH; Jheong WH; Kim J; Ko G
    J Water Health; 2011 Mar; 9(1):27-36. PubMed ID: 21301112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved method for concentration of Giardia, Cryptosporidium, and poliovirus from water.
    Watt PM; Johnson DC; Gerba CP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Mar; 37(3):321-30. PubMed ID: 11929071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a viral concentration method for bottled water stored in hydrophobic support.
    Gassilloud B; Huguet L; Maul A; Gantzer C
    J Virol Methods; 2007 Jun; 142(1-2):98-104. PubMed ID: 17374404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative characterization of the inhibitory effects of salt, humic acid, and heavy metals on the recovery of waterborne norovirus by electropositive filters.
    Kim M; Ko G
    J Water Health; 2013 Dec; 11(4):613-22. PubMed ID: 24334835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular detection of human enteric viruses in urban rivers in Korea.
    Lee C; Kim SJ
    J Microbiol Biotechnol; 2008 Jun; 18(6):1156-63. PubMed ID: 18600062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A direct membrane filter method for enumerating somatic coliphages in drinking water.
    Alonso MC; Sánchez JM; Moriñigo MA; Borrego JJ
    Microbiologia; 1994 Sep; 10(3):285-96. PubMed ID: 7873105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Efficiency of current technics for the isolation of viruses in water].
    Schlaak M; Tischer E; Lopez JM
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Jan; 177(1-2):127-40. PubMed ID: 6322475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of an adsorption-elution method for detection of astrovirus and norovirus in environmental waters.
    Victoria M; Guimarães F; Fumian T; Ferreira F; Vieira C; Leite JP; Miagostovich M
    J Virol Methods; 2009 Mar; 156(1-2):73-6. PubMed ID: 19056426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Filtration methods for recovery of Bacillus anthracis spores spiked into source and finished water.
    Perez A; Hohn C; Higgins J
    Water Res; 2005 Dec; 39(20):5199-211. PubMed ID: 16290183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of ZetaPlus 60S and nitrocellulose membrane filters for the simultaneous concentration of F-RNA coliphages, porcine teschovirus and porcine adenovirus from river water.
    Jones TH; Muehlhauser V; Thériault G
    J Virol Methods; 2014 Sep; 206():5-11. PubMed ID: 24880068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a virus concentration method using lanthanum-based chemical flocculation coupled with modified membrane filtration procedures.
    Zhang Y; Riley LK; Lin M; Purdy GA; Hu Z
    J Virol Methods; 2013 Jun; 190(1-2):41-8. PubMed ID: 23557666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of a robotic RNA purification protocol based on the NucliSens easyMAG for real-time RT-PCR detection of hepatitis A virus in bottled water.
    Perelle S; Cavellini L; Burger C; Blaise-Boisseau S; Hennechart-Collette C; Merle G; Fach P
    J Virol Methods; 2009 Apr; 157(1):80-3. PubMed ID: 19114058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concentration of viruses from tap water and sewage with a charge-modified filter aid.
    Singh SN; Rose JB; Gerba CP
    J Virol Methods; 1983 Jun; 6(6):329-36. PubMed ID: 6309878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-analytical and analytical procedures for the detection of enteric viruses and enterovirus in water samples.
    Pang XL; Lee BE; Pabbaraju K; Gabos S; Craik S; Payment P; Neumann N
    J Virol Methods; 2012 Sep; 184(1-2):77-83. PubMed ID: 22633928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of poliovirus concentration and recovery from treated wastewater by two electropositive filter methods.
    Soto-Beltran M; Ikner LA; Bright KR
    Food Environ Virol; 2013 Jun; 5(2):91-6. PubMed ID: 23412726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of methods for concentrating human adenoviruses, polyomavirus JC and noroviruses in source waters and drinking water using quantitative PCR.
    Albinana-Gimenez N; Clemente-Casares P; Calgua B; Huguet JM; Courtois S; Girones R
    J Virol Methods; 2009 Jun; 158(1-2):104-9. PubMed ID: 19428577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water.
    Ikner LA; Soto-Beltran M; Bright KR
    Appl Environ Microbiol; 2011 May; 77(10):3500-6. PubMed ID: 21441329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.
    McMinn BR
    J Virol Methods; 2013 Nov; 193(2):284-90. PubMed ID: 23796954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.