These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16194908)

  • 1. Aluminium recycling and environmental issues of salt slag treatment.
    Xiao Y; Reuter MA; Boin U
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(10):1861-75. PubMed ID: 16194908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminium salt slag characterization and utilization--a review.
    Tsakiridis PE
    J Hazard Mater; 2012 May; 217-218():1-10. PubMed ID: 22480708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LCA of recycling aluminium incineration bottom ash, dross and shavings in a rotary furnace and environmental benefits of salt-slag valorisation.
    Vallejo Olivares A; Pastor-Vallés E; Pettersen JB; Tranell G
    Waste Manag; 2024 Jun; 182():11-20. PubMed ID: 38626501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2004; 24(2):119-26. PubMed ID: 14761750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of aluminium scrap for secondary Al-Si alloys.
    Velasco E; Nino J
    Waste Manag Res; 2011 Jul; 29(7):686-93. PubMed ID: 20837560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of aluminium-magnesium alloys and some valuable salts from used beverage cans.
    Rabah MA
    Waste Manag; 2003; 23(2):173-82. PubMed ID: 12623092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing performance and durability of slag made from incinerator bottom ash and fly ash.
    Chiou IJ; Wang KS; Tsai CC
    Waste Manag; 2009 Feb; 29(2):501-5. PubMed ID: 18544471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma assisted synthesis of γ-alumina from waste aluminium dross.
    Saravanakumar R; Ramachandran K; Laly LG; Ananthapadmanabhan PV; Yugeswaran S
    Waste Manag; 2018 Jul; 77():565-575. PubMed ID: 29778404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic analysis of contamination by alloying elements in aluminum recycling.
    Nakajima K; Takeda O; Miki T; Matsubae K; Nakamura S; Nagasaka T
    Environ Sci Technol; 2010 Jul; 44(14):5594-600. PubMed ID: 20536230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and optimization of an innovative facility for automated sorting of aluminium scraps.
    Wu Y; Oudshoorn T; Rem P
    Waste Manag; 2024 Dec; 189():103-113. PubMed ID: 39182276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.
    Potysz A; van Hullebusch ED; Kierczak J
    J Environ Manage; 2018 Aug; 219():138-152. PubMed ID: 29738933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.
    Biganzoli L; Gorla L; Nessi S; Grosso M
    Waste Manag; 2012 Dec; 32(12):2266-72. PubMed ID: 22749723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal losses in pyrometallurgical operations - A review.
    Bellemans I; De Wilde E; Moelans N; Verbeken K
    Adv Colloid Interface Sci; 2018 May; 255():47-63. PubMed ID: 28826814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling.
    Hiraki T; Miki T; Nakajima K; Matsubae K; Nakamura S; Nagasaka T
    Materials (Basel); 2014 Jul; 7(8):5543-5553. PubMed ID: 28788144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust identification method for nonferrous metal scraps based on deep learning and superpixel optimization.
    Li Y; Qin X; Zhang Z; Dong H
    Waste Manag Res; 2021 Apr; 39(4):573-583. PubMed ID: 33499775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.
    Quijorna N; de Pedro M; Romero M; Andrés A
    J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling.
    Zhang Y; Lei Y; Ma W; Ren Y
    Waste Manag; 2023 Feb; 157():36-46. PubMed ID: 36521299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.