BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16194915)

  • 1. Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species.
    Wang Q; Wang X; Wang X; Ma H; Ren N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(10):1951-62. PubMed ID: 16194915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Isolation of an amylolytic lactic acid bacterium and its application on lactic acid production from kitchen waste].
    Wang XM; Wang QH; Ren NQ; Wang XQ; Ma HZ
    Huan Jing Ke Xue; 2006 Apr; 27(4):800-4. PubMed ID: 16768010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system.
    Tashiro Y; Inokuchi S; Poudel P; Okugawa Y; Miyamoto H; Miayamoto H; Sakai K
    Bioresour Technol; 2016 Sep; 216():52-9. PubMed ID: 27233097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of anaerobic/aerobic incubation and storage temperature on preservation and deodorization of kitchen garbage.
    Wang Q; Narita JY; Xie W; Ohsumi Y; Kusano K; Shirai Y; Ogawa HI
    Bioresour Technol; 2002 Sep; 84(3):213-20. PubMed ID: 12118696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct lactic acid production from household food waste by lactic acid bacteria.
    Song L; Liu S; Liu R; Yang D; Dai X
    Sci Total Environ; 2022 Sep; 840():156479. PubMed ID: 35679945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011.
    Ohkouchi Y; Inoue Y
    Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermotolerant Bacillus licheniformis TY7 produces optically active l-lactic acid from kitchen refuse under open condition.
    Sakai K; Yamanami T
    J Biosci Bioeng; 2006 Aug; 102(2):132-4. PubMed ID: 17027876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium at high temperatures.
    Tashiro Y; Matsumoto H; Miyamoto H; Okugawa Y; Pramod P; Miyamoto H; Sakai K
    Bioresour Technol; 2013 Oct; 146():672-681. PubMed ID: 23978480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Racemization of l-lactic acid in pH-swing open fermentation of kitchen refuse by selective proliferation of Lactobacillus plantarum.
    Sakai K; Fujii N; Chukeatirote E
    J Biosci Bioeng; 2006 Sep; 102(3):227-32. PubMed ID: 17046538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain.
    Singhvi M; Zendo T; Gokhale D; Sonomoto K
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6425-6435. PubMed ID: 29799089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes.
    Zhang B; He PJ; Ye NF; Shao LM
    Bioresour Technol; 2008 Mar; 99(4):855-62. PubMed ID: 17376675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-site production of crude glucoamylase for kitchen waste hydrolysis.
    Wang XQ; Wang QH; Liu YY; Ma HZ
    Waste Manag Res; 2010 Jun; 28(6):539-44. PubMed ID: 20015936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources.
    Altaf M; Venkateshwar M; Srijana M; Reddy G
    J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of microbial community structure in lactic acid fermentation from kitchen waste].
    Liu JG; Wang QH; Wang S; Sun XH; Qiu TL; Li H
    Huan Jing Ke Xue; 2012 Sep; 33(9):3236-40. PubMed ID: 23243886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.
    Ventimiglia G; Alfonzo A; Galluzzo P; Corona O; Francesca N; Caracappa S; Moschetti G; Settanni L
    Food Microbiol; 2015 Oct; 51():57-68. PubMed ID: 26187828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693.
    Saha BC; Nakamura LK
    Biotechnol Bioeng; 2003 Jun; 82(7):864-71. PubMed ID: 12701154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli.
    Nguyen CM; Kim JS; Hwang HJ; Park MS; Choi GJ; Choi YH; Jang KS; Kim JC
    Bioresour Technol; 2012 Apr; 110():552-9. PubMed ID: 22336740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactic acid production from submerged fermentation of broken rice using undefined mixed culture.
    Nunes LV; de Barros Correa FF; de Oliva Neto P; Mayer CR; Escaramboni B; Campioni TS; de Barros NR; Herculano RD; Fernández Núñez EG
    World J Microbiol Biotechnol; 2017 Apr; 33(4):79. PubMed ID: 28341908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production.
    Tang J; Wang XC; Hu Y; Ngo HH; Li Y
    Bioresour Technol; 2017 Jun; 234():40-47. PubMed ID: 28315603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.