BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 16195171)

  • 1. Dye-tissue interactions: mechanisms, quantification and bonding parameters for dyes used in biological staining.
    Dapson RW
    Biotech Histochem; 2005; 80(2):49-72. PubMed ID: 16195171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF; Bader RF
    Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological staining: mechanisms and theory.
    Horobin RW
    Biotech Histochem; 2002 Jan; 77(1):3-13. PubMed ID: 11991329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio investigation of the complexes between bromobenzene and several electron donors: some insights into the magnitude and nature of halogen bonding interactions.
    Lu YX; Zou JW; Wang YH; Jiang YJ; Yu QS
    J Phys Chem A; 2007 Oct; 111(42):10781-8. PubMed ID: 17918810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A contribution to the theory of biological staining based on the principles for structural organization of biological macromolecules.
    Prentø P
    Biotech Histochem; 2001 May; 76(3):137-61. PubMed ID: 11475317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules.
    Kemp DD; Gordon MS
    J Phys Chem A; 2008 Jun; 112(22):4885-94. PubMed ID: 18473449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and chemical bonding in the N(2)-CuX and N(2)...XCu (X = F, Cl, Br) systems studied by means of the molecular orbital and Quantum Chemical Topology methods.
    Kisowska K; Berski S; Latajka Z
    J Comput Chem; 2008 Dec; 29(16):2677-92. PubMed ID: 18484638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical analysis of the electronic properties of the sex pheromone and its analogue derivatives in the female processionary moth Thaumetopoea pytiocampa.
    Chamorro ER; Sequeira AF; Zalazar MF; Peruchena NM
    Bioorg Med Chem; 2008 Sep; 16(18):8535-45. PubMed ID: 18752964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hirshfeld interpretation of the charge, spin distribution, and polarity of the dipole moment of the open shell (3Sigma-) nitrogen halides: NF, NCl, and NBr.
    Harrison JF
    J Chem Phys; 2009 Jul; 131(4):044117. PubMed ID: 19655847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen bonding and induced dipole moments in water: predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics.
    Dyer PJ; Cummings PT
    J Chem Phys; 2006 Oct; 125(14):144519. PubMed ID: 17042621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing non-covalent interactions in alkali metal ion-acetonitrile-water clusters.
    Vaden TD; Lisy JM
    J Phys Chem A; 2005 May; 109(17):3880-6. PubMed ID: 16833705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.
    Smalø HS; Astrand PO; Jensen L
    J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How resonance assists hydrogen bonding interactions: an energy decomposition analysis.
    Beck JF; Mo Y
    J Comput Chem; 2007 Jan; 28(1):455-66. PubMed ID: 17143867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of fragmental charge transfer via hydrogen bonds. Direct measurement of electronic contributions.
    Yerushalmi R; Brandis A; Rosenbach-Belkin V; Baldridge KK; Scherz A
    J Phys Chem A; 2006 Jan; 110(2):412-21. PubMed ID: 16405312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra- and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis.
    Munshi P; Guru Row TN
    Acta Crystallogr B; 2006 Aug; 62(Pt 4):612-26. PubMed ID: 16840811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational modification of the hierarchy of intermolecular interactions in molecular crystal structures by using tunable halogen bonds.
    Mínguez Espallargas G; Zordan F; Arroyo Marín L; Adams H; Shankland K; van de Streek J; Brammer L
    Chemistry; 2009 Aug; 15(31):7554-68. PubMed ID: 19593826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-thiolate bonds in bioinorganic chemistry.
    Solomon EI; Gorelsky SI; Dey A
    J Comput Chem; 2006 Sep; 27(12):1415-28. PubMed ID: 16807974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation of atomic charges on proton transfer in strong hydrogen bonds: the case of anionic and neutral imidazole-acetate complexes.
    Pacios LF; Gómez PC; Gálvez O
    J Comput Chem; 2006 Nov; 27(14):1650-61. PubMed ID: 16900495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.