These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16195227)

  • 1. Lipid peroxidation induces cholesterol domain formation in model membranes.
    Jacob RF; Mason RP
    J Biol Chem; 2005 Nov; 280(47):39380-7. PubMed ID: 16195227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,2-naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes.
    Jacob RF; Aleo MD; Self-Medlin Y; Doshna CM; Mason RP
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7189-97. PubMed ID: 24130176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose promotes membrane cholesterol crystalline domain formation by lipid peroxidation.
    Self-Medlin Y; Byun J; Jacob RF; Mizuno Y; Mason RP
    Biochim Biophys Acta; 2009 Jun; 1788(6):1398-403. PubMed ID: 19376082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis.
    Mason RP; Walter MF; Mason PE
    Free Radic Biol Med; 1997; 23(3):419-25. PubMed ID: 9214578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rosmarinic acid and its esters inhibit membrane cholesterol domain formation through an antioxidant mechanism based, in nonlinear fashion, on alkyl chain length.
    Sherratt SCR; Villeneuve P; Durand E; Mason RP
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):550-555. PubMed ID: 30582915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations of the effects of phospholipid and cholesterol peroxidation on lipid membrane properties.
    Neto AJP; Cordeiro RM
    Biochim Biophys Acta; 2016 Sep; 1858(9):2191-2198. PubMed ID: 27349733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.
    Mason RP; Jacob RF; Shrivastava S; Sherratt SCR; Chattopadhyay A
    Biochim Biophys Acta; 2016 Dec; 1858(12):3131-3140. PubMed ID: 27718370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.
    Mason RP; Jacob RF
    Biochim Biophys Acta; 2015 Feb; 1848(2):502-9. PubMed ID: 25449996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses.
    Jacob RF; Cenedella RJ; Mason RP
    J Biol Chem; 2001 Apr; 276(17):13573-8. PubMed ID: 11278611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis.
    McNulty HP; Byun J; Lockwood SF; Jacob RF; Mason RP
    Biochim Biophys Acta; 2007 Jan; 1768(1):167-74. PubMed ID: 17070769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis.
    Tulenko TN; Chen M; Mason PE; Mason RP
    J Lipid Res; 1998 May; 39(5):947-56. PubMed ID: 9610760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active metabolite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mechanism.
    Mason RP; Walter MF; Day CA; Jacob RF
    J Biol Chem; 2006 Apr; 281(14):9337-45. PubMed ID: 16464853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane peroxidative damage enhancement by the ether lipid class of antineoplastic agents.
    Wagner BA; Buettner GR; Burns CP
    Cancer Res; 1992 Nov; 52(21):6045-51. PubMed ID: 1394229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of endoplasmic reticulum-bound cholesterol regulatory enzymes by iron/ascorbate-mediated lipid peroxidation.
    Brunet S; Thibault L; Lepage G; Seidman EG; Dubé N; Levy E
    Free Radic Biol Med; 2000 Jan; 28(1):46-54. PubMed ID: 10656290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration.
    Samuni AM; Lipman A; Barenholz Y
    Chem Phys Lipids; 2000 Apr; 105(2):121-34. PubMed ID: 10823461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation.
    Xu X; London E
    Biochemistry; 2000 Feb; 39(5):843-9. PubMed ID: 10653627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between an organic hydroperoxide and an unsaturated phospholipid and alpha-tocopherol in model membranes.
    Nakano M; Sugioka K; Nakamura T; Oki T
    Biochim Biophys Acta; 1980 Aug; 619(2):274-86. PubMed ID: 7407212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the NMDA receptor noncompetitive antagonist MK-801 with model and native membranes.
    Moring J; Niego LA; Ganley LM; Trumbore MW; Herbette LG
    Biophys J; 1994 Dec; 67(6):2376-86. PubMed ID: 7696477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.