These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 16195390)
1. Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice. Hancock CR; Janssen E; Terjung RL J Appl Physiol (1985); 2006 Feb; 100(2):406-13. PubMed ID: 16195390 [TBL] [Abstract][Full Text] [Related]
2. Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice. Zhang SJ; Sandström ME; Aydin J; Westerblad H; Wieringa B; Katz A Acta Physiol (Oxf); 2008 Mar; 192(3):413-20. PubMed ID: 17973952 [TBL] [Abstract][Full Text] [Related]
3. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle. Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251 [TBL] [Abstract][Full Text] [Related]
4. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. Park SH; Gammon SR; Knippers JD; Paulsen SR; Rubink DS; Winder WW J Appl Physiol (1985); 2002 Jun; 92(6):2475-82. PubMed ID: 12015362 [TBL] [Abstract][Full Text] [Related]
6. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. Thomson DM; Fick CA; Gordon SE J Appl Physiol (1985); 2008 Mar; 104(3):625-32. PubMed ID: 18187610 [TBL] [Abstract][Full Text] [Related]
7. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Steinberg GR; Rush JW; Dyck DJ Am J Physiol Endocrinol Metab; 2003 Mar; 284(3):E648-54. PubMed ID: 12441311 [TBL] [Abstract][Full Text] [Related]
8. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Sakamoto K; Göransson O; Hardie DG; Alessi DR Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E310-7. PubMed ID: 15068958 [TBL] [Abstract][Full Text] [Related]
9. 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. Nielsen JN; Mustard KJ; Graham DA; Yu H; MacDonald CS; Pilegaard H; Goodyear LJ; Hardie DG; Richter EA; Wojtaszewski JF J Appl Physiol (1985); 2003 Feb; 94(2):631-41. PubMed ID: 12391032 [TBL] [Abstract][Full Text] [Related]
10. Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase. Rubink DS; Winder WW J Appl Physiol (1985); 2005 Apr; 98(4):1221-7. PubMed ID: 15579580 [TBL] [Abstract][Full Text] [Related]
11. 5'-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. Barnes BR; Glund S; Long YC; Hjälm G; Andersson L; Zierath JR FASEB J; 2005 May; 19(7):773-9. PubMed ID: 15857891 [TBL] [Abstract][Full Text] [Related]
12. Malonyl-CoA decarboxylase is not a substrate of AMP-activated protein kinase in rat fast-twitch skeletal muscle or an islet cell line. Habinowski SA; Hirshman M; Sakamoto K; Kemp BE; Gould SJ; Goodyear LJ; Witters LA Arch Biochem Biophys; 2001 Dec; 396(1):71-9. PubMed ID: 11716464 [TBL] [Abstract][Full Text] [Related]
13. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Thomson DM; Porter BB; Tall JH; Kim HJ; Barrow JR; Winder WW Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E196-202. PubMed ID: 16926377 [TBL] [Abstract][Full Text] [Related]
14. Progressive increase in human skeletal muscle AMPKalpha2 activity and ACC phosphorylation during exercise. Stephens TJ; Chen ZP; Canny BJ; Michell BJ; Kemp BE; McConell GK Am J Physiol Endocrinol Metab; 2002 Mar; 282(3):E688-94. PubMed ID: 11832374 [TBL] [Abstract][Full Text] [Related]
17. Caffeine-induced Ca(2+) release increases AMPK-dependent glucose uptake in rodent soleus muscle. Jensen TE; Rose AJ; Hellsten Y; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E286-92. PubMed ID: 17405829 [TBL] [Abstract][Full Text] [Related]
18. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872 [TBL] [Abstract][Full Text] [Related]
19. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. Raney MA; Yee AJ; Todd MK; Turcotte LP Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E592-8. PubMed ID: 15547141 [TBL] [Abstract][Full Text] [Related]
20. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]