BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16195450)

  • 41. Molecular basis for fungicidal action of neothyonidioside, a triterpene glycoside from the sea cucumber, Australostichopus mollis.
    Yibmantasiri P; Leahy DC; Busby BP; Angermayr SA; Sorgo AG; Boeger K; Heathcott R; Barber JM; Moraes G; Matthews JH; Northcote PT; Atkinson PH; Bellows DS
    Mol Biosyst; 2012 Mar; 8(3):902-12. PubMed ID: 22271309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans.
    Chen CG; Yang YL; Tseng KY; Shih HI; Liou CH; Lin CC; Lo HJ
    Fungal Genet Biol; 2009 Sep; 46(9):714-20. PubMed ID: 19527793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Resistance to antimycotics: role of calcineurin and protein kinases].
    Nikitin AV
    Antibiot Khimioter; 2009; 54(3-4):3-5. PubMed ID: 19711840
    [No Abstract]   [Full Text] [Related]  

  • 44. Re: Jin E and Santo M "Neurite outgrowth of NG08-15 cells induced by heat shock protein 90 inhibitors".
    Gold BG
    Cell Biochem Funct; 2008 Aug; 26(6):740. PubMed ID: 18720425
    [No Abstract]   [Full Text] [Related]  

  • 45. Biosynthesis of the heat-shock protein 90 inhibitor geldanamycin: new insight into the formation of the benzoquinone moiety.
    Lee D; Lee K; Cai XF; Dat NT; Boovanahalli SK; Lee M; Shin JC; Kim W; Jeong JK; Lee JS; Lee CH; Lee JH; Hong YS; Lee JJ
    Chembiochem; 2006 Feb; 7(2):246-8. PubMed ID: 16381049
    [No Abstract]   [Full Text] [Related]  

  • 46. The GPI anchor pathway: a promising antifungal target?
    Mutz M; Roemer T
    Future Med Chem; 2016 Aug; 8(12):1387-91. PubMed ID: 27510640
    [No Abstract]   [Full Text] [Related]  

  • 47. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes.
    Ricardo E; Costa-de-Oliveira S; Dias AS; Guerra J; Rodrigues AG; Pina-Vaz C
    FEMS Yeast Res; 2009 Jun; 9(4):618-25. PubMed ID: 19416368
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The heat shock protein 90 of Leishmania donovani.
    Wiesgigl M; Clos J
    Med Microbiol Immunol; 2001 Nov; 190(1-2):27-31. PubMed ID: 11770104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
    Zeng YB; Qian YS; Ma L; Gu HN
    Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine.
    Paquet V; Carreira EM
    Org Lett; 2006 Apr; 8(9):1807-9. PubMed ID: 16623556
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dihydroquinone ansamycins: toward resolving the conflict between low in vitro affinity and high cellular potency of geldanamycin derivatives.
    Maroney AC; Marugan JJ; Mezzasalma TM; Barnakov AN; Garrabrant TA; Weaner LE; Jones WJ; Barnakova LA; Koblish HK; Todd MJ; Masucci JA; Deckman IC; Galemmo RA; Johnson DL
    Biochemistry; 2006 May; 45(17):5678-85. PubMed ID: 16634649
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two mutants selectively resistant to polyenes reveal distinct mechanisms of antifungal activity by nystatin and amphotericin B.
    Hapala I; Klobucníková V; Mazánová K; Kohút P
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1206-9. PubMed ID: 16246082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry.
    Diezmann S; Michaut M; Shapiro RS; Bader GD; Cowen LE
    PLoS Genet; 2012; 8(3):e1002562. PubMed ID: 22438817
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane raft lipid constituents affect drug susceptibilities of Candida albicans.
    Pasrija R; Prasad T; Prasad R
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1219-23. PubMed ID: 16246085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure elucidation of Sch 725674 from Aspergillus sp.
    Yang SW; Chan TM; Terracciano J; Loebenberg D; Patel M; Chu M
    J Antibiot (Tokyo); 2005 Aug; 58(8):535-8. PubMed ID: 16266128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae.
    Santos-Pereira C; Andrés MT; Chaves SR; Fierro JF; Gerós H; Manon S; Rodrigues LR; Côrte-Real M
    Int J Biol Macromol; 2021 Feb; 171():343-357. PubMed ID: 33421469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new method for isolation of S-adenosylmethionine (SAM)-accumulating yeast.
    Shobayashi M; Mukai N; Iwashita K; Hiraga Y; Iefuji H
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):704-10. PubMed ID: 16010571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance.
    Robbins N; Leach MD; Cowen LE
    Cell Rep; 2012 Oct; 2(4):878-88. PubMed ID: 23041319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Signal-transduction cascades as targets for therapeutic intervention by natural products.
    Cardenas ME; Sanfridson A; Cutler NS; Heitman J
    Trends Biotechnol; 1998 Oct; 16(10):427-33. PubMed ID: 9807840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.