These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 16195555)

  • 1. Parallel interrogation of covalent intermediates in the biosynthesis of gramicidin S using high-resolution mass spectrometry.
    Miller LM; Mazur MT; McLoughlin SM; Kelleher NL
    Protein Sci; 2005 Oct; 14(10):2702-12. PubMed ID: 16195555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific observation of acyl intermediate processing in thiotemplate biosynthesis by fourier transform mass spectrometry: the polyketide module of yersiniabactin synthetase.
    Mazur MT; Walsh CT; Kelleher NL
    Biochemistry; 2003 Nov; 42(46):13393-400. PubMed ID: 14621984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and regiospecific interrogation of covalent intermediates in the nonribosomal peptide synthesis of yersiniabactin.
    McLoughlin SM; Kelleher NL
    J Am Chem Soc; 2004 Oct; 126(41):13265-75. PubMed ID: 15479080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin.
    Schoenafinger G; Schracke N; Linne U; Marahiel MA
    J Am Chem Soc; 2006 Jun; 128(23):7406-7. PubMed ID: 16756271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting non-ribosomal and polyketide biosynthetic machineries using electrospray ionization Fourier-Transform mass spectrometry.
    Dorrestein PC; Kelleher NL
    Nat Prod Rep; 2006 Dec; 23(6):893-918. PubMed ID: 17119639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoenzymatic approaches for streamlined detection of active site modifications on thiotemplate assembly lines using mass spectrometry.
    McLoughlin SM; Mazur MT; Miller LM; Yin J; Liu F; Walsh CT; Kelleher NL
    Biochemistry; 2005 Nov; 44(43):14159-69. PubMed ID: 16245932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates.
    Stein T; Vater J; Kruft V; Otto A; Wittmann-Liebold B; Franke P; Panico M; McDowell R; Morris HR
    J Biol Chem; 1996 Jun; 271(26):15428-35. PubMed ID: 8663196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating nonribosomal peptide and polyketide biosynthesis by direct detection of intermediates on >70 kDa polypeptides by using Fourier-transform mass spectrometry.
    Hicks LM; Mazur MT; Miller LM; Dorrestein PC; Schnarr NA; Khosla C; Kelleher NL
    Chembiochem; 2006 Jun; 7(6):904-7. PubMed ID: 16642537
    [No Abstract]   [Full Text] [Related]  

  • 9. In Vitro Reconstruction of Nonribosomal Peptide Biosynthesis Directly from DNA Using Cell-Free Protein Synthesis.
    Goering AW; Li J; McClure RA; Thomson RJ; Jewett MC; Kelleher NL
    ACS Synth Biol; 2017 Jan; 6(1):39-44. PubMed ID: 27478992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the C-domain in nonribosomal peptide synthesis.
    Bergendahl V; Linne U; Marahiel MA
    Eur J Biochem; 2002 Jan; 269(2):620-9. PubMed ID: 11856321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of linear gramicidin requires the cooperation of two independent reductases.
    Schracke N; Linne U; Mahlert C; Marahiel MA
    Biochemistry; 2005 Jun; 44(23):8507-13. PubMed ID: 15938641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile detection of acyl and peptidyl intermediates on thiotemplate carrier domains via phosphopantetheinyl elimination reactions during tandem mass spectrometry.
    Dorrestein PC; Bumpus SB; Calderone CT; Garneau-Tsodikova S; Aron ZD; Straight PD; Kolter R; Walsh CT; Kelleher NL
    Biochemistry; 2006 Oct; 45(42):12756-66. PubMed ID: 17042494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric interrogation of thioester-bound intermediates in the initial stages of epothilone biosynthesis.
    Hicks LM; O'Connor SE; Mazur MT; Walsh CT; Kelleher NL
    Chem Biol; 2004 Mar; 11(3):327-35. PubMed ID: 15123262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis.
    Stein DB; Linne U; Hahn M; Marahiel MA
    Chembiochem; 2006 Nov; 7(11):1807-14. PubMed ID: 16952189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation.
    Kellersberger KA; Yu E; Kruppa GH; Young MM; Fabris D
    Anal Chem; 2004 May; 76(9):2438-45. PubMed ID: 15117181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of peptide synthetases in the synthesis of peptide analogues.
    Kleinkauf H; von Döhren H
    Acta Biochim Pol; 1997; 44(4):839-47. PubMed ID: 9584867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contemporary mass spectrometry for the direct detection of enzyme intermediates.
    Kelleher NL; Hicks LM
    Curr Opin Chem Biol; 2005 Oct; 9(5):424-30. PubMed ID: 16129650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and localization of protein modifications by high resolution tandem mass spectrometry.
    Meng F; Forbes AJ; Miller LM; Kelleher NL
    Mass Spectrom Rev; 2005; 24(2):126-34. PubMed ID: 15389861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonribosomal peptide synthetases: structures and dynamics.
    Strieker M; Tanović A; Marahiel MA
    Curr Opin Struct Biol; 2010 Apr; 20(2):234-40. PubMed ID: 20153164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide mixture sequencing by tandem Fourier-transform mass spectrometry.
    Cody RB; Amster IJ; McLafferty FW
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6367-70. PubMed ID: 2413438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.