BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16195878)

  • 1. Interpreting cell cycle effects of drugs: the case of melphalan.
    Lupi M; Cappella P; Matera G; Natoli C; Ubezio P
    Cancer Chemother Pharmacol; 2006 Apr; 57(4):443-57. PubMed ID: 16195878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the complexity of cell cycle arrest and killing of drugs: kinetics of phase-specific effects induced by taxol.
    Sena G; Onado C; Cappella P; Montalenti F; Ubezio P
    Cytometry; 1999 Oct; 37(2):113-24. PubMed ID: 10486523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of the complex dynamics of G1, S, and G2-M checkpoint activities.
    Ubezio P; Lupi M; Branduardi D; Cappella P; Cavallini E; Colombo V; Matera G; Natoli C; Tomasoni D; D'Incalci M
    Cancer Res; 2009 Jun; 69(12):5234-40. PubMed ID: 19509236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylator resistance in human B lymphoid cell lines: (1). Melphalan accumulation, cytotoxicity, interstrand-DNA-crosslinks, cell cycle analysis, and glutathione content in the melphalan-sensitive B-lymphocytic cell line (WIL2) and in the melphalan-resistant B-CLL cell line (WSU-CLL).
    Pu Q; Bianchi P; Bezwoda WR
    Anticancer Res; 2000; 20(4):2561-8. PubMed ID: 10953327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound.
    Bergamaschi D; Ronzoni S; Taverna S; Faretta M; De Feudis P; Faircloth G; Jimeno J; Erba E; D'Incalci M
    Br J Cancer; 1999 Jan; 79(2):267-77. PubMed ID: 9888468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to estimate cell cycle time and growth fraction using bromodeoxyuridine-flow cytometry data from a single sample.
    Eidukevicius R; Characiejus D; Janavicius R; Kazlauskaite N; Pasukoniene V; Mauricas M; Den Otter W
    BMC Cancer; 2005 Sep; 5():122. PubMed ID: 16176590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line.
    Serafim TL; Oliveira PJ; Sardao VA; Perkins E; Parke D; Holy J
    Cancer Chemother Pharmacol; 2008 May; 61(6):1007-18. PubMed ID: 17661039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction.
    Liu XH; Zheng XF; Wang YL
    Chin Med J (Engl); 2009 Jul; 122(14):1681-5. PubMed ID: 19719971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time- and dose-dependence of DNA fragmentation induced by anticancer agents: a flow cytometric study.
    Cappella P; Onado C; Sena G; Montalenti F; Spinelli L; Ubezio P
    Eur J Histochem; 1997; 41 Suppl 2():67-8. PubMed ID: 9859787
    [No Abstract]   [Full Text] [Related]  

  • 10. Chemopotentiating effects of a novel NAD biosynthesis inhibitor, FK866, in combination with antineoplastic agents.
    Pogrebniak A; Schemainda I; Azzam K; Pelka-Fleischer R; Nüssler V; Hasmann M
    Eur J Med Res; 2006 Aug; 11(8):313-21. PubMed ID: 17052966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell kinetic changes in cultured tumor cells after treatment with radiation and chemotherapy.
    Murata T; Akagi K; Uda M; Kimura H; Nasu R; Tanaka Y
    Int J Oncol; 1998 Jan; 12(1):171-4. PubMed ID: 9454901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor cell kinetics following antineoplastic ether phospholipid treatment.
    Principe P; Sidoti C; Braquet P
    Cancer Res; 1992 May; 52(9):2509-15. PubMed ID: 1568220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-dependent antitumor effects of differentiation agents in combination with cell cycle-dependent cytotoxic drugs.
    Verheul HM; Qian DZ; Carducci MA; Pili R
    Cancer Chemother Pharmacol; 2007 Aug; 60(3):329-39. PubMed ID: 17256134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cis-diammino-dichloro-platinum (II) on cell growth and cell cycle progression of a mouse ascites tumor growing in vivo.
    Lewin F; Skog S; Tribukait B; Ringborg U
    In Vivo; 1989; 3(4):237-42. PubMed ID: 2519858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bromodeoxyuridine labeling and flow cytometric identification of replicating Saccharomyces cerevisiae cells: lengths of cell cycle phases and population variability at specific cell cycle positions.
    Dien BS; Srienc F
    Biotechnol Prog; 1991; 7(4):291-8. PubMed ID: 1367343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells.
    Fimognari C; Lenzi M; Cantelli-Forti G; Hrelia P
    Ann N Y Acad Sci; 2009 Aug; 1171():264-9. PubMed ID: 19723064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid biosynthesis and its coordination with cell cycle progression.
    Kwok AC; Wong JT
    Plant Cell Physiol; 2005 Dec; 46(12):1973-86. PubMed ID: 16239308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of the effect of antitumor agents on cell cycle traverse by flow cytometry].
    Mitomo Y; Takamoto S
    Gan To Kagaku Ryoho; 1988 Apr; 15(4 Pt 2-1):1019-25. PubMed ID: 3389824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemosensitivity of human small cell carcinoma of the lung detected by flow cytometric DNA analysis of drug-induced cell cycle perturbations in vitro.
    Engelholm SA; Spang-Thomsen M; Vindeløv LL; Brünner NA
    Cytometry; 1986 May; 7(3):243-50. PubMed ID: 3011370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calpain as a multi-site regulator of cell cycle.
    Jánossy J; Ubezio P; Apáti A; Magócsi M; Tompa P; Friedrich P
    Biochem Pharmacol; 2004 Apr; 67(8):1513-21. PubMed ID: 15041468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.