These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 16195924)
1. Local network parameters can affect inter-network phase lags in central pattern generators. Jones SR; Kopell N J Math Biol; 2006 Jan; 52(1):115-40. PubMed ID: 16195924 [TBL] [Abstract][Full Text] [Related]
2. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition. Kotaleski JH; Grillner S; Lansner A Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935 [TBL] [Abstract][Full Text] [Related]
3. The role of long-range coupling in crayfish swimmeret phase-locking. Spardy LE; Lewis TJ Biol Cybern; 2018 Aug; 112(4):305-321. PubMed ID: 29569056 [TBL] [Abstract][Full Text] [Related]
4. From swimming to walking: a single basic network for two different behaviors. Bem T; Cabelguen JM; Ekeberg O; Grillner S Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223 [TBL] [Abstract][Full Text] [Related]
5. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator. Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673 [TBL] [Abstract][Full Text] [Related]
7. Order parameter for bursting polyrhythms in multifunctional central pattern generators. Wojcik J; Clewley R; Shilnikov A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056209. PubMed ID: 21728632 [TBL] [Abstract][Full Text] [Related]
8. Toward robust phase-locking in Melibe swim central pattern generator models. Jalil S; Allen D; Youker J; Shilnikov A Chaos; 2013 Dec; 23(4):046105. PubMed ID: 24387584 [TBL] [Abstract][Full Text] [Related]
9. How does the crayfish swimmeret system work? Insights from nearest-neighbor coupled oscillator models. Skinner FK; Kopell N; Mulloney B J Comput Neurosci; 1997 Apr; 4(2):151-60. PubMed ID: 9154521 [TBL] [Abstract][Full Text] [Related]
10. Robust phase-waves in chains of half-center oscillators. Zhang C; Lewis TJ J Math Biol; 2017 Jun; 74(7):1627-1656. PubMed ID: 27738761 [TBL] [Abstract][Full Text] [Related]
11. Associative neural network model for the generation of temporal patterns. Theory and application to central pattern generators. Kleinfeld D; Sompolinsky H Biophys J; 1988 Dec; 54(6):1039-51. PubMed ID: 3233265 [TBL] [Abstract][Full Text] [Related]
12. Collective-phase description of coupled oscillators with general network structure. Kori H; Kawamura Y; Nakao H; Arai K; Kuramoto Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036207. PubMed ID: 19905200 [TBL] [Abstract][Full Text] [Related]
13. Plasticity and learning in a network of coupled phase oscillators. Seliger P; Young SC; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041906. PubMed ID: 12005872 [TBL] [Abstract][Full Text] [Related]
14. Not by spikes alone: responses of coordinating neurons and the swimmeret system to local differences in excitation. Mulloney B; Hall WM J Neurophysiol; 2007 Jan; 97(1):436-50. PubMed ID: 17050832 [TBL] [Abstract][Full Text] [Related]
15. The synchronization properties of a network of inhibitory interneurons depend on the biophysical model. Di Garbo A; Barbi M; Chillemi S Biosystems; 2007 Apr; 88(3):216-27. PubMed ID: 17307287 [TBL] [Abstract][Full Text] [Related]
16. Spiking neuron models with excitatory or inhibitory synaptic couplings and synchronization phenomena. Sato YD; Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041903. PubMed ID: 12443231 [TBL] [Abstract][Full Text] [Related]
17. How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators. Kriener B Chaos; 2012 Sep; 22(3):033143. PubMed ID: 23020482 [TBL] [Abstract][Full Text] [Related]