These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16196316)

  • 21. Push-pull laser-atomic oscillator.
    Jau YY; Happer W
    Phys Rev Lett; 2007 Nov; 99(22):223001. PubMed ID: 18233280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture.
    Boudot R; Miletic D; Dziuban P; Affolderbach C; Knapkiewicz P; Dziuban J; Mileti G; Girodano V; Gorecki C
    Opt Express; 2011 Feb; 19(4):3106-14. PubMed ID: 21369132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of laser sources with different spectral properties on the performance of vapor cell atomic clocks based on lin||lin CPT.
    Breschi E; Kazakov G; Lammegger R; Matisov B; Windholz L; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):926-30. PubMed ID: 19473911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring Buffer-Gas Pressure in Sealed Glass Cells: An Assessment of the KSK Technique.
    Driskell T; Huang M; Camparo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):928-37. PubMed ID: 26529755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold-atom clock based on a diffractive optic.
    Elvin R; Hoth GW; Wright M; Lewis B; McGilligan JP; Arnold AS; Griffin PF; Riis E
    Opt Express; 2019 Dec; 27(26):38359-38366. PubMed ID: 31878604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal design and validation of atom trapping and atomic storage time for active hydrogen maser.
    Liu S; Wang L; Wu X; Guo M; Chen X; Zhu H; Wang P; Wang B; Wang W
    Rev Sci Instrum; 2021 Feb; 92(2):023202. PubMed ID: 33648115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfabricated Vapor Cells with Reflective Sidewalls for Chip Scale Atomic Sensors.
    Han R; You Z; Zhang F; Xue H; Ruan Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.
    François B; Calosso CE; Danet JM; Boudot R
    Rev Sci Instrum; 2014 Sep; 85(9):094709. PubMed ID: 25273756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin waves and collisional frequency shifts of a trapped-atom clock.
    Maineult W; Deutsch C; Gibble K; Reichel J; Rosenbusch P
    Phys Rev Lett; 2012 Jul; 109(2):020407. PubMed ID: 23030137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cavity-Q aging observed via an atomic-candle signal.
    Coffer JG; Sickmiller B; Camparo JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):139-45. PubMed ID: 15055803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A polarization converting device for an interfering enhanced CPT atomic clock.
    Wang K; Tian Y; Yin Y; Wang Y; Gu S
    Rev Sci Instrum; 2017 Nov; 88(11):113107. PubMed ID: 29195405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of Optical Rubidium Clock Frequency Spanning 65 Days.
    Lemke ND; Martin KW; Beard R; Stuhl BK; Metcalf AJ; Elgin JD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping.
    Hong HG; Park SE; Lee SB; Heo MS; Park J; Kim TH; Kim HY; Kwon TY
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the Use of Ramsey-CPT Spectroscopy for a Microcell-Based Atomic Clock.
    Carle C; Petersen M; Passilly N; Hafiz MA; de Clercq E; Boudot R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3249-3256. PubMed ID: 34077357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Progress on Micro-Fabricated Alkali Metal Vapor Cells.
    Wang X; Ye M; Lu F; Mao Y; Tian H; Li J
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technological Assessment of MEMS Alkali Vapor Cells for Atomic References.
    Knapkiewicz P
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30602697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.
    François B; Calosso CE; Abdel Hafiz M; Micalizio S; Boudot R
    Rev Sci Instrum; 2015 Sep; 86(9):094707. PubMed ID: 26429467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loaded Microwave Cavity for Compact Vapor-Cell Clocks.
    Gozzelino M; Micalizio S; Calosso CE; Godone A; Lin H; Levi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):872-879. PubMed ID: 32746219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.