These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16196316)

  • 41. Investigations on continuous and pulsed interrogation for a CPT atomic clock.
    Castagna N; Boudot R; Guérandel S; De Clercq E; Dimarcq N; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):246-53. PubMed ID: 19251511
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.
    Takamizawa A; Yanagimachi S; Tanabe T; Hagimoto K; Hirano I; Watabe K; Ikegami T; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1463-9. PubMed ID: 25167146
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Laser-written vapor cells for chip-scale atomic sensing and spectroscopy.
    Lucivero VG; Zanoni A; Corrielli G; Osellame R; Mitchell MW
    Opt Express; 2022 Jul; 30(15):27149-27163. PubMed ID: 36236892
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microwave cavities for vapor cell frequency standards.
    Godone A; Micalizio S; Levi F; Calosso C
    Rev Sci Instrum; 2011 Jul; 82(7):074703. PubMed ID: 21806210
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrastable laser with average fractional frequency drift rate below 5 × 10⁻¹⁹/s.
    Hagemann C; Grebing C; Lisdat C; Falke S; Legero T; Sterr U; Riehle F; Martin MJ; Ye J
    Opt Lett; 2014 Sep; 39(17):5102-5. PubMed ID: 25166084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Medium-long term frequency stability of pulsed vapor cell clocks.
    Micalizio S; Godone A; Levi F; Calosso C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1524-34. PubMed ID: 20639147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chip Scale Atomic Resonator Frequency Stabilization System With Ultra-Low Power Consumption for Optoelectronic Oscillators.
    Zhao J; Zhang Y; Lu H; Hou D; Zhang S; Wang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):1022-7. PubMed ID: 26529751
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Suppression of Dick Effect in Ramsey-CPT Atomic Clock by Interleaving Lock.
    Cheng P; Sun X; Zhang J; Wang L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2195-2200. PubMed ID: 30106720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-orbit operation of an atomic clock based on laser-cooled
    Liu L; Lü DS; Chen WB; Li T; Qu QZ; Wang B; Li L; Ren W; Dong ZR; Zhao JB; Xia WB; Zhao X; Ji JW; Ye MF; Sun YG; Yao YY; Song D; Liang ZG; Hu SJ; Yu DH; Hou X; Shi W; Zang HG; Xiang JF; Peng XK; Wang YZ
    Nat Commun; 2018 Jul; 9(1):2760. PubMed ID: 30042419
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Active Faraday optical frequency standard.
    Zhuang W; Chen J
    Opt Lett; 2014 Nov; 39(21):6339-42. PubMed ID: 25361349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magneto-optic rotation detection scheme for miniaturized coherent population trapping atomic clock.
    Qu S; Yin Y; Cai D; Gong H
    Appl Opt; 2019 Dec; 58(36):9773-9776. PubMed ID: 31873619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Brazilian time and frequency atomic standards program.
    Ahmed M; Magalhães DV; Bebeachibuli A; Müller ST; Alves RF; Ortega TA; Weiner J; Bagnato VS
    An Acad Bras Cienc; 2008 Jun; 80(2):217-52. PubMed ID: 18506250
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty.
    Nicholson TL; Campbell SL; Hutson RB; Marti GE; Bloom BJ; McNally RL; Zhang W; Barrett MD; Safronova MS; Strouse GF; Tew WL; Ye J
    Nat Commun; 2015 Apr; 6():6896. PubMed ID: 25898253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced temperature sensitivity in vapor-cell frequency standards.
    Calosso CE; Godone A; Levi F; Micalizio S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2646-54. PubMed ID: 23221213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lossless state detection of single neutral atoms.
    Bochmann J; Mücke M; Guhl C; Ritter S; Rempe G; Moehring DL
    Phys Rev Lett; 2010 May; 104(20):203601. PubMed ID: 20867026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alkali Vapor MEMS Cells Technology toward High-Vacuum Self-Pumping MEMS Cell for Atomic Spectroscopy.
    Knapkiewicz P
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cavity-based single atom preparation and high-fidelity hyperfine state readout.
    Gehr R; Volz J; Dubois G; Steinmetz T; Colombe Y; Lev BL; Long R; Estève J; Reichel J
    Phys Rev Lett; 2010 May; 104(20):203602. PubMed ID: 20867027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A highly miniaturized vacuum package for a trapped ion atomic clock.
    Schwindt PD; Jau YY; Partner H; Casias A; Wagner AR; Moorman M; Manginell RP; Kellogg JR; Prestage JD
    Rev Sci Instrum; 2016 May; 87(5):053112. PubMed ID: 27250397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.