These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 1619648)
1. Atomic interactions in protein-carbohydrate complexes. Tryptophan residues in the periplasmic maltodextrin receptor for active transport and chemotaxis. Spurlino JC; Rodseth LE; Quiocho FA J Mol Biol; 1992 Jul; 226(1):15-22. PubMed ID: 1619648 [TBL] [Abstract][Full Text] [Related]
2. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein. Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376 [TBL] [Abstract][Full Text] [Related]
3. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. Spurlino JC; Lu GY; Quiocho FA J Biol Chem; 1991 Mar; 266(8):5202-19. PubMed ID: 2002054 [TBL] [Abstract][Full Text] [Related]
4. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Quiocho FA; Spurlino JC; Rodseth LE Structure; 1997 Aug; 5(8):997-1015. PubMed ID: 9309217 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Sharff AJ; Rodseth LE; Spurlino JC; Quiocho FA Biochemistry; 1992 Nov; 31(44):10657-63. PubMed ID: 1420181 [TBL] [Abstract][Full Text] [Related]
6. Refined 1.8-A structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. Sharff AJ; Rodseth LE; Quiocho FA Biochemistry; 1993 Oct; 32(40):10553-9. PubMed ID: 8399200 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of the maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: flexibility of tertiary structure and ligand binding. Duan X; Hall JA; Nikaido H; Quiocho FA J Mol Biol; 2001 Mar; 306(5):1115-26. PubMed ID: 11237621 [TBL] [Abstract][Full Text] [Related]
8. Refined structures of two insertion/deletion mutants probe function of the maltodextrin binding protein. Sharff AJ; Rodseth LE; Szmelcman S; Hofnung M; Quiocho FA J Mol Biol; 1995 Feb; 246(1):8-13. PubMed ID: 7853407 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein. Shilton BH; Shuman HA; Mowbray SL J Mol Biol; 1996 Nov; 264(2):364-76. PubMed ID: 8951382 [TBL] [Abstract][Full Text] [Related]
10. Crystallization of genetically engineered active maltose-binding proteins, including an immunogenic viral epitope insertion. Rodseth LE; Martineau P; Duplay P; Hofnung M; Quiocho FA J Mol Biol; 1990 Jun; 213(4):607-11. PubMed ID: 1694248 [TBL] [Abstract][Full Text] [Related]
11. Crystallization of the maltodextrin-binding protein for active transport and chemotaxis in several different liganded and mutant forms. Rodseth L; Quiocho FA J Mol Biol; 1993 Mar; 230(2):675-8. PubMed ID: 8464075 [TBL] [Abstract][Full Text] [Related]
12. An NMR study of ligand binding by maltodextrin binding protein. Gehring K; Zhang X; Hall J; Nikaido H; Wemmer DE Biochem Cell Biol; 1998; 76(2-3):189-97. PubMed ID: 9923688 [TBL] [Abstract][Full Text] [Related]
13. Substrate specificity of the Escherichia coli maltodextrin transport system and its component proteins. Ferenci T; Muir M; Lee KS; Maris D Biochim Biophys Acta; 1986 Aug; 860(1):44-50. PubMed ID: 3524683 [TBL] [Abstract][Full Text] [Related]
14. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. Hor LI; Shuman HA J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172 [TBL] [Abstract][Full Text] [Related]
15. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934 [TBL] [Abstract][Full Text] [Related]
16. Residues in the alpha helix 7 of the bacterial maltose binding protein which are important in interactions with the Mal FGK2 complex. Szmelcman S; Sassoon N; Hofnung M Protein Sci; 1997 Mar; 6(3):628-36. PubMed ID: 9070445 [TBL] [Abstract][Full Text] [Related]
17. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. Davidson AL; Sharma S J Bacteriol; 1997 Sep; 179(17):5458-64. PubMed ID: 9287001 [TBL] [Abstract][Full Text] [Related]
18. 1.7 A X-ray structure of the periplasmic ribose receptor from Escherichia coli. Mowbray SL; Cole LB J Mol Biol; 1992 May; 225(1):155-75. PubMed ID: 1583688 [TBL] [Abstract][Full Text] [Related]
19. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon. Puyet A; Espinosa M J Mol Biol; 1993 Apr; 230(3):800-11. PubMed ID: 8478935 [TBL] [Abstract][Full Text] [Related]
20. Sugar-binding and crystallographic studies of an arabinose-binding protein mutant (Met108Leu) that exhibits enhanced affinity and altered specificity. Vermersch PS; Lemon DD; Tesmer JJ; Quiocho FA Biochemistry; 1991 Jul; 30(28):6861-6. PubMed ID: 2069949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]