These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16196540)
1. System size stochastic resonance: general nonequilibrium potential framework. von Haeften B; Izús G; Wio HS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021101. PubMed ID: 16196540 [TBL] [Abstract][Full Text] [Related]
2. Enhancement and weakening of stochastic resonance for a coupled system. Li JH Chaos; 2011 Dec; 21(4):043115. PubMed ID: 22225352 [TBL] [Abstract][Full Text] [Related]
3. Nonequilibrium Lyapunov function and a fluctuation relation for stochastic systems: Poisson-representation approach. Petrosyan KG; Hu CK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042132. PubMed ID: 24827217 [TBL] [Abstract][Full Text] [Related]
4. Aging in coherent noise models and natural time. Tirnakli U; Abe S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056120. PubMed ID: 15600705 [TBL] [Abstract][Full Text] [Related]
5. 1/f Noise from nonlinear stochastic differential equations. Ruseckas J; Kaulakys B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031105. PubMed ID: 20365695 [TBL] [Abstract][Full Text] [Related]
6. Spectral methods for parametric sensitivity in stochastic dynamical systems. Kim D; Debusschere BJ; Najm HN Biophys J; 2007 Jan; 92(2):379-93. PubMed ID: 17085489 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of self-adjusting systems with noise. Melby P; Weber N; Hübler A Chaos; 2005 Sep; 15(3):33902. PubMed ID: 16252993 [TBL] [Abstract][Full Text] [Related]
8. On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems. Zhu WQ; Ying ZG J Zhejiang Univ Sci; 2004 Nov; 5(11):1313-7. PubMed ID: 15495321 [TBL] [Abstract][Full Text] [Related]
9. Analytic formula for leading-order nonlinear coherent response in stochastic resonance. Dhara AK Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031132. PubMed ID: 20365722 [TBL] [Abstract][Full Text] [Related]
10. Estimating causal dependencies in networks of nonlinear stochastic dynamical systems. Sommerlade L; Eichler M; Jachan M; Henschel K; Timmer J; Schelter B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051128. PubMed ID: 20364968 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian perspective on stochastic neurocontrol. Herzallah R; Lowe D IEEE Trans Neural Netw; 2008 May; 19(5):914-24. PubMed ID: 18467218 [TBL] [Abstract][Full Text] [Related]
12. Collective dynamics of a network of ratchets coupled via a stochastic dynamical environment. Vincent UE; Nana-Nbendjo BR; McClintock PV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022913. PubMed ID: 23496597 [TBL] [Abstract][Full Text] [Related]
13. Nonequilibrium stationary state of a truncated stochastic nonlinear Schrödinger equation: formulation and mean-field approximation. Mounaix P; Collet P; Lebowitz JL Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031109. PubMed ID: 20365699 [TBL] [Abstract][Full Text] [Related]
14. Detecting and characterizing phase synchronization in nonstationary dynamical systems. Lai YC; Frei MG; Osorio I Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026214. PubMed ID: 16605436 [TBL] [Abstract][Full Text] [Related]
15. Effect of noise on the neutral direction of chaotic attractor. Lai YC; Liu Z Chaos; 2004 Mar; 14(1):189-92. PubMed ID: 15003060 [TBL] [Abstract][Full Text] [Related]
17. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators. Yu N; Kuske R; Li YX Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093 [TBL] [Abstract][Full Text] [Related]
18. Finite-time stabilization for a class of stochastic nonlinear systems via output feedback. Zha W; Zhai J; Fei S; Wang Y ISA Trans; 2014 May; 53(3):709-16. PubMed ID: 24530195 [TBL] [Abstract][Full Text] [Related]
19. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. Chen W; Jiao L; Li J; Li R IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):939-50. PubMed ID: 19933016 [TBL] [Abstract][Full Text] [Related]
20. Spectral analysis for nonstationary and nonlinear systems: a discrete-time-model-based approach. He F; Billings SA; Wei HL; Sarrigiannis PG; Zhao Y IEEE Trans Biomed Eng; 2013 Aug; 60(8):2233-41. PubMed ID: 23508247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]