BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1619660)

  • 1. Contribution of the hydrophobic effect to globular protein stability.
    Pace CN
    J Mol Biol; 1992 Jul; 226(1):29-35. PubMed ID: 1619660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of hydrophobic interactions to protein stability.
    Pace CN; Fu H; Fryar KL; Landua J; Trevino SR; Shirley BA; Hendricks MM; Iimura S; Gajiwala K; Scholtz JM; Grimsley GR
    J Mol Biol; 2011 May; 408(3):514-28. PubMed ID: 21377472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bonding stabilizes globular proteins.
    Myers JK; Pace CN
    Biophys J; 1996 Oct; 71(4):2033-9. PubMed ID: 8889177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2.
    Jackson SE; Moracci M; elMasry N; Johnson CM; Fersht AR
    Biochemistry; 1993 Oct; 32(42):11259-69. PubMed ID: 8218191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability.
    Serrano L; Kellis JT; Cann P; Matouschek A; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):783-804. PubMed ID: 1569557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme.
    Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW
    Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility.
    Creamer TP; Srinivasan R; Rose GD
    Biochemistry; 1997 Mar; 36(10):2832-5. PubMed ID: 9062111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences.
    Eriksson AE; Baase WA; Matthews BW
    J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease.
    Shortle D; Stites WE; Meeker AK
    Biochemistry; 1990 Sep; 29(35):8033-41. PubMed ID: 2261461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines.
    Holder JB; Bennett AF; Chen J; Spencer DS; Byrne MP; Stites WE
    Biochemistry; 2001 Nov; 40(46):13998-4003. PubMed ID: 11705391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding.
    Pace CN
    Methods Enzymol; 1995; 259():538-54. PubMed ID: 8538471
    [No Abstract]   [Full Text] [Related]  

  • 13. Structure-based thermodynamic scale of alpha-helix propensities in amino acids.
    Luque I; Mayorga OL; Freire E
    Biochemistry; 1996 Oct; 35(42):13681-8. PubMed ID: 8885848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations.
    Carter CW; LeFebvre BC; Cammer SA; Tropsha A; Edgell MH
    J Mol Biol; 2001 Aug; 311(4):625-38. PubMed ID: 11518520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96----Ala mutation in barnase.
    Prevost M; Wodak SJ; Tidor B; Karplus M
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10880-4. PubMed ID: 1961758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities.
    Buckle AM; Cramer P; Fersht AR
    Biochemistry; 1996 Apr; 35(14):4298-305. PubMed ID: 8605178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of water molecules in the interior of a protein to the conformational stability.
    Takano K; Funahashi J; Yamagata Y; Fujii S; Yutani K
    J Mol Biol; 1997 Nov; 274(1):132-42. PubMed ID: 9398521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure denaturation of proteins: evaluation of compressibility effects.
    Prehoda KE; Mooberry ES; Markley JL
    Biochemistry; 1998 Apr; 37(17):5785-90. PubMed ID: 9558311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme.
    Hurley JH; Baase WA; Matthews BW
    J Mol Biol; 1992 Apr; 224(4):1143-59. PubMed ID: 1569571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-operative interactions during protein folding.
    Horovitz A; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):733-40. PubMed ID: 1569552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.