These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 16196628)
21. Saddle-node bifurcation of periodic orbit route to hidden attractors. Kumarasamy S; Banerjee M; Varshney V; Shrimali MD; Kuznetsov NV; Prasad A Phys Rev E; 2023 May; 107(5):L052201. PubMed ID: 37328971 [TBL] [Abstract][Full Text] [Related]
22. Basin entropy as an indicator of a bifurcation in a time-delayed system. Tarigo JP; Stari C; Masoller C; Martí AC Chaos; 2024 May; 34(5):. PubMed ID: 38717408 [TBL] [Abstract][Full Text] [Related]
24. Effect of resonant-frequency mismatch on attractors. Wang X; Lai YC; Lai CH Chaos; 2006 Jun; 16(2):023127. PubMed ID: 16822030 [TBL] [Abstract][Full Text] [Related]
25. Intermingled attractors in an asymmetrically driven modified Chua oscillator. Tanze Wontchui T; Ekonde Sone M; Ujjwal SR; Effa JY; Ekobena Fouda HP; Ramaswamy R Chaos; 2022 Jan; 32(1):013106. PubMed ID: 35105121 [TBL] [Abstract][Full Text] [Related]
26. Riddled basins of attraction in systems exhibiting extreme events. Saha A; Feudel U Chaos; 2018 Mar; 28(3):033610. PubMed ID: 29604637 [TBL] [Abstract][Full Text] [Related]
27. Coexisting multiple attractors and riddled basins of a memristive system. Wang G; Yuan F; Chen G; Zhang Y Chaos; 2018 Jan; 28(1):013125. PubMed ID: 29390635 [TBL] [Abstract][Full Text] [Related]
28. Bistable chaos without symmetry in generalized synchronization. Guan S; Lai CH; Wei GW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548 [TBL] [Abstract][Full Text] [Related]
29. Canard-like phenomena in piecewise-smooth Van der Pol systems. Roberts A; Gendinning P Chaos; 2014 Jun; 24(2):023138. PubMed ID: 24985452 [TBL] [Abstract][Full Text] [Related]
30. Prediction of long-term dynamics from transients. Holzfuss J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016214. PubMed ID: 15697705 [TBL] [Abstract][Full Text] [Related]
32. Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. Calleja R; Figueras JL Chaos; 2012 Sep; 22(3):033114. PubMed ID: 23020453 [TBL] [Abstract][Full Text] [Related]
33. Adaptive synapse-based neuron model with heterogeneous multistability and riddled basins. Bao H; Zhang J; Wang N; Kuznetsov NV; Bao BC Chaos; 2022 Dec; 32(12):123101. PubMed ID: 36587361 [TBL] [Abstract][Full Text] [Related]
34. Multiple attractors in stage-structured population models with birth pulses. Tang S; Chen L Bull Math Biol; 2003 May; 65(3):479-95. PubMed ID: 12749535 [TBL] [Abstract][Full Text] [Related]
35. Classifying and quantifying basins of attraction. Sprott JC; Xiong A Chaos; 2015 Aug; 25(8):083101. PubMed ID: 26328552 [TBL] [Abstract][Full Text] [Related]
36. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold. Dronov V; Ott E Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384 [TBL] [Abstract][Full Text] [Related]
37. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins. Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776 [TBL] [Abstract][Full Text] [Related]
38. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
39. Random parameter-switching synthesis of a class of hyperbolic attractors. Danca MF Chaos; 2008 Sep; 18(3):033111. PubMed ID: 19045449 [TBL] [Abstract][Full Text] [Related]
40. Basin size evolution between dissipative and conservative limits. Rech PC; Beims MW; Gallas JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):017202. PubMed ID: 15697773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]