These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 16196631)
1. Fractional kinetic model for chaotic transport in nonintegrable Hamiltonian systems. Cubrović M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):025204. PubMed ID: 16196631 [TBL] [Abstract][Full Text] [Related]
2. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient. Milovanov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983 [TBL] [Abstract][Full Text] [Related]
3. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions. Lin G J Magn Reson; 2015 Oct; 259():232-40. PubMed ID: 26384777 [TBL] [Abstract][Full Text] [Related]
4. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials. Sideris IV; Kandrup HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811 [TBL] [Abstract][Full Text] [Related]
5. Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Kandrup HE; Siopis C; Contopoulos G; Dvorak R Chaos; 1999 Jun; 9(2):381-392. PubMed ID: 12779836 [TBL] [Abstract][Full Text] [Related]
6. Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings. de Oliveira JA; Dettmann CP; da Costa DR; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062904. PubMed ID: 23848745 [TBL] [Abstract][Full Text] [Related]
7. Fundamental Asymmetry in Quenches Between Integrable and Nonintegrable Systems. Rigol M Phys Rev Lett; 2016 Mar; 116(10):100601. PubMed ID: 27015465 [TBL] [Abstract][Full Text] [Related]
8. On the Riemannian description of chaotic instability in Hamiltonian dynamics. Pettini M; Valdettaro R Chaos; 1995 Dec; 5(4):646-652. PubMed ID: 12780221 [TBL] [Abstract][Full Text] [Related]
9. Pseudochaos and low-frequency percolation scaling for turbulent diffusion in magnetized plasma. Milovanov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046403. PubMed ID: 19518355 [TBL] [Abstract][Full Text] [Related]
10. Absence of exponential sensitivity to small perturbations in nonintegrable systems of spins 1/2. Fine BV; Elsayed TA; Kropf CM; de Wijn AS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012923. PubMed ID: 24580313 [TBL] [Abstract][Full Text] [Related]
12. Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Watkins NW; Credgington D; Sanchez R; Rosenberg SJ; Chapman SC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041124. PubMed ID: 19518190 [TBL] [Abstract][Full Text] [Related]
13. Ballistic flights and random diffusion as building blocks for Hamiltonian kinetics. Denisov S; Klafter J; Urbakh M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046217. PubMed ID: 12443309 [TBL] [Abstract][Full Text] [Related]
14. Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Zaslavsky GM; Edelman M; Niyazov BA Chaos; 1997 Mar; 7(1):159-181. PubMed ID: 12779645 [TBL] [Abstract][Full Text] [Related]
15. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos. Pazó D; López JM; Politi A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750 [TBL] [Abstract][Full Text] [Related]
16. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Chechkin AV; Gorenflo R; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281 [TBL] [Abstract][Full Text] [Related]
17. Diffusion equations for a Markovian jumping process. Srokowski T; Kamińska A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021103. PubMed ID: 17025389 [TBL] [Abstract][Full Text] [Related]