These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 16196636)
1. Quintic complex Ginzburg-Landau model for ring fiber lasers. Komarov A; Leblond H; Sanchez F Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):025604. PubMed ID: 16196636 [TBL] [Abstract][Full Text] [Related]
2. Femto/nano-second switchable passively mode-locked fiber laser with analytic modeling by the cubic-quintic Ginzburg-Landau equation. Kuan WH; Kao LT; Wang JY; Lin KH Opt Lett; 2018 Jan; 43(2):341-344. PubMed ID: 29328276 [TBL] [Abstract][Full Text] [Related]
3. Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique. Wu J; Tang DY; Zhao LM; Chan CC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046605. PubMed ID: 17155190 [TBL] [Abstract][Full Text] [Related]
4. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation. Soto-Crespo JM; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066610. PubMed ID: 12513432 [TBL] [Abstract][Full Text] [Related]
5. Chaotic dynamics of a passively mode-locked soliton fiber ring laser. Zhao LM; Tang DY; Liu AQ Chaos; 2006 Mar; 16(1):013128. PubMed ID: 16599759 [TBL] [Abstract][Full Text] [Related]
6. Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: from dissipative soliton to dissipative soliton resonance. Lin W; Wang S; Xu S; Luo ZC; Yang Z Opt Express; 2015 Jun; 23(11):14860-75. PubMed ID: 26072844 [TBL] [Abstract][Full Text] [Related]
7. Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg-Landau equation model. Lei T; Tu C; Lu F; Deng Y; Li E Opt Express; 2009 Jan; 17(2):585-91. PubMed ID: 19158871 [TBL] [Abstract][Full Text] [Related]
8. Theory of dissipative solitons in complex Ginzburg-Landau systems. Chen S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):025601. PubMed ID: 18850890 [TBL] [Abstract][Full Text] [Related]
9. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Skarka V; Aleksić NB Phys Rev Lett; 2006 Jan; 96(1):013903. PubMed ID: 16486455 [TBL] [Abstract][Full Text] [Related]
18. Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry. Descalzi O; Cisternas J; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):065201. PubMed ID: 17280110 [TBL] [Abstract][Full Text] [Related]
19. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser. Feng Z; Rong Q; Qiao X; Shao Z; Su D Appl Opt; 2014 Sep; 53(27):6237-42. PubMed ID: 25322103 [TBL] [Abstract][Full Text] [Related]
20. Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation. Gutiérrez P; Escaff D; Pérez-Oyarzún S; Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):037202. PubMed ID: 19905250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]