These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16196636)

  • 1. Quintic complex Ginzburg-Landau model for ring fiber lasers.
    Komarov A; Leblond H; Sanchez F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):025604. PubMed ID: 16196636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femto/nano-second switchable passively mode-locked fiber laser with analytic modeling by the cubic-quintic Ginzburg-Landau equation.
    Kuan WH; Kao LT; Wang JY; Lin KH
    Opt Lett; 2018 Jan; 43(2):341-344. PubMed ID: 29328276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique.
    Wu J; Tang DY; Zhao LM; Chan CC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046605. PubMed ID: 17155190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation.
    Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066610. PubMed ID: 12513432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic dynamics of a passively mode-locked soliton fiber ring laser.
    Zhao LM; Tang DY; Liu AQ
    Chaos; 2006 Mar; 16(1):013128. PubMed ID: 16599759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical identification of soliton dynamics in normal-dispersion passively mode-locked fiber lasers: from dissipative soliton to dissipative soliton resonance.
    Lin W; Wang S; Xu S; Luo ZC; Yang Z
    Opt Express; 2015 Jun; 23(11):14860-75. PubMed ID: 26072844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg-Landau equation model.
    Lei T; Tu C; Lu F; Deng Y; Li E
    Opt Express; 2009 Jan; 17(2):585-91. PubMed ID: 19158871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of dissipative solitons in complex Ginzburg-Landau systems.
    Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):025601. PubMed ID: 18850890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations.
    Skarka V; Aleksić NB
    Phys Rev Lett; 2006 Jan; 96(1):013903. PubMed ID: 16486455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gain-guided soliton in a positive group-dispersion fiber laser.
    Zhao LM; Tang DY; Wu J
    Opt Lett; 2006 Jun; 31(12):1788-90. PubMed ID: 16729071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistable pulselike solutions in a parametrically driven Ginzburg-Landau equation.
    Barashenkov IV; Cross S; Malomed BA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056605. PubMed ID: 14682904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bright-Dark and Multi Solitons Solutions of (3 + 1)-Dimensional Cubic-Quintic Complex Ginzburg-Landau Dynamical Equation with Applications and Stability.
    Yue C; Lu D; Arshad M; Nasreen N; Qian X
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation.
    Kalashnikov VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046606. PubMed ID: 19905470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation.
    Shtyrina OV; Yarutkina IA; Skidin AS; Podivilov EV; Fedoruk MP
    Opt Express; 2019 Mar; 27(5):6711-6718. PubMed ID: 30876251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach.
    Akhmediev N; Soto-Crespo JM; Town G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056602. PubMed ID: 11415026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: an analytical approach.
    Descalzi O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046210. PubMed ID: 16383515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent Passive Mode-Locked and Self-Q-Switched Operation in Laser Systems.
    Guo J; Cundiff ST; Soto-Crespo JM; Akhmediev N
    Phys Rev Lett; 2021 Jun; 126(22):224101. PubMed ID: 34152192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collisions of pulses can lead to holes via front interaction in the cubic-quintic complex Ginzburg-Landau equation in an annular geometry.
    Descalzi O; Cisternas J; Brand HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):065201. PubMed ID: 17280110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.
    Feng Z; Rong Q; Qiao X; Shao Z; Su D
    Appl Opt; 2014 Sep; 53(27):6237-42. PubMed ID: 25322103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moving breathing pulses in the one-dimensional complex cubic-quintic Ginzburg-Landau equation.
    Gutiérrez P; Escaff D; Pérez-Oyarzún S; Descalzi O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):037202. PubMed ID: 19905250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.