These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16196796)

  • 1. Crystal-amorphous and crystal-crystal phase transformations via virtual melting.
    Levitas VI
    Phys Rev Lett; 2005 Aug; 95(7):075701. PubMed ID: 16196796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.
    Momeni K; Levitas VI
    Phys Chem Chem Phys; 2016 Apr; 18(17):12183-203. PubMed ID: 27078783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-solid phase transformation via virtual melting significantly below the melting temperature.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    Phys Rev Lett; 2004 Jun; 92(23):235702. PubMed ID: 15245170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual melting as a new mechanism of stress relaxation under high strain rate loading.
    Levitas VI; Ravelo R
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13204-7. PubMed ID: 22847409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2014 Mar; 140(11):114504. PubMed ID: 24655190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of high density amorphous ice by decompression of ice VII and ice VIII at 135 K.
    McBride C; Vega C; Sanz E; Abascal JL
    J Chem Phys; 2004 Dec; 121(23):11907-11. PubMed ID: 15634152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites.
    Maldonado M; Oleksiak MD; Chinta S; Rimer JD
    J Am Chem Soc; 2013 Feb; 135(7):2641-52. PubMed ID: 23265176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases.
    Levitas VI; Chen H; Xiong L
    Phys Rev Lett; 2017 Jan; 118(2):025701. PubMed ID: 28128597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase diagrams of binary crystalline-crystalline polymer blends.
    Matkar RA; Kyu T
    J Phys Chem B; 2006 Aug; 110(32):16059-65. PubMed ID: 16898763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transformations in nanograin materials under high pressure and plastic shear: nanoscale mechanisms.
    Levitas VI; Javanbakht M
    Nanoscale; 2014 Jan; 6(1):162-6. PubMed ID: 24213214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate).
    Gan Z; Kuwabara K; Abe H; Iwata T; Doi Y
    Biomacromolecules; 2004; 5(2):371-8. PubMed ID: 15002996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb.
    Kalkan B; Edwards TG; Raoux S; Sen S
    J Chem Phys; 2013 Aug; 139(8):084507. PubMed ID: 24007018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of surface wettability and photomicropatterning with a polymorphic diarylethene crystal upon photoirradiation.
    Kitagawa D; Yamashita I; Kobatake S
    Chemistry; 2011 Aug; 17(35):9825-31. PubMed ID: 21748813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous solid-solid interface melting driven by concentration gradient.
    Zhu Y; Wang H; Li M
    J Chem Phys; 2019 Aug; 151(7):074501. PubMed ID: 31438698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase.
    Aragones JL; Conde MM; Noya EG; Vega C
    Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting and crystallization of sugars in high-solids systems.
    Roos YH; Karel M; Labuza TP; Levine H; Mathlouthi M; Reid D; Shalaev E; Slade L
    J Agric Food Chem; 2013 Apr; 61(13):3167-78. PubMed ID: 23470203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase diagram of water between hydrophobic surfaces.
    Koga K; Tanaka H
    J Chem Phys; 2005 Mar; 122(10):104711. PubMed ID: 15836349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.