These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16196842)

  • 1. Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation.
    Zheng SB
    Phys Rev Lett; 2005 Aug; 95(8):080502. PubMed ID: 16196842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation".
    Oreshkov O; Calsamiglia J
    Phys Rev Lett; 2009 Oct; 103(18):188901; author reply 188902. PubMed ID: 19905839
    [No Abstract]   [Full Text] [Related]  

  • 3. Implementation of adiabatic geometric gates with superconducting phase qubits.
    Peng ZH; Chu HF; Wang ZD; Zheng DN
    J Phys Condens Matter; 2009 Jan; 21(4):045701. PubMed ID: 21715819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast non-Abelian geometric gates via transitionless quantum driving.
    Zhang J; Kyaw TH; Tong DM; Sjöqvist E; Kwek LC
    Sci Rep; 2015 Dec; 5():18414. PubMed ID: 26687580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric quantum computation using nuclear magnetic resonance.
    Jones JA; Vedral V; Ekert A; Castagnoli G
    Nature; 2000 Feb; 403(6772):869-71. PubMed ID: 10706278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonadiabatic conditional geometric phase shift with NMR.
    Xiang-Bin W; Keiji M
    Phys Rev Lett; 2001 Aug; 87(9):097901. PubMed ID: 11531598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.
    Song C; Zheng SB; Zhang P; Xu K; Zhang L; Guo Q; Liu W; Xu D; Deng H; Huang K; Zheng D; Zhu X; Wang H
    Nat Commun; 2017 Oct; 8(1):1061. PubMed ID: 29057880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Realization of Robust Geometric Quantum Gates with Solid-State Spins.
    Huang YY; Wu YK; Wang F; Hou PY; Wang WB; Zhang WG; Lian WQ; Liu YQ; Wang HY; Zhang HY; He L; Chang XY; Xu Y; Duan LM
    Phys Rev Lett; 2019 Jan; 122(1):010503. PubMed ID: 31012688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of geometric phases in superconducting nanocircuits.
    Falci G; Fazio R; Palma GM; Siewert J; Vedral V
    Nature; 2000 Sep; 407(6802):355-8. PubMed ID: 11014186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protecting conditional quantum gates by robust dynamical decoupling.
    Piltz Ch; Scharfenberger B; Khromova A; Varón AF; Wunderlich Ch
    Phys Rev Lett; 2013 May; 110(20):200501. PubMed ID: 25167390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate.
    Leibfried D; DeMarco B; Meyer V; Lucas D; Barrett M; Britton J; Itano WM; Jelenković B; Langer C; Rosenband T; Wineland DJ
    Nature; 2003 Mar; 422(6930):412-5. PubMed ID: 12660778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage.
    Møller D; Madsen LB; Mølmer K
    Phys Rev Lett; 2008 May; 100(17):170504. PubMed ID: 18518265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of non-adiabatic geometric phase for quantum computing by NMR.
    Das R; Kumar SK; Kumar A
    J Magn Reson; 2005 Dec; 177(2):318-28. PubMed ID: 16182577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconventional geometric quantum computation.
    Zhu SL; Wang ZD
    Phys Rev Lett; 2003 Oct; 91(18):187902. PubMed ID: 14611315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric manipulation of trapped ions for quantum computation.
    Duan LM; Cirac JI; Zoller P
    Science; 2001 Jun; 292(5522):1695-7. PubMed ID: 11387469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental realization of non-adiabatic universal quantum gates using geometric Landau-Zener-Stückelberg interferometry.
    Wang L; Tu T; Gong B; Zhou C; Guo GC
    Sci Rep; 2016 Jan; 6():19048. PubMed ID: 26738875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental realization of universal geometric quantum gates with solid-state spins.
    Zu C; Wang WB; He L; Zhang WG; Dai CY; Wang F; Duan LM
    Nature; 2014 Oct; 514(7520):72-5. PubMed ID: 25279920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiabatic and high-fidelity quantum gates with hybrid Rydberg-Rydberg interactions.
    Yu D; Wang H; Ma D; Zhao X; Qian J
    Opt Express; 2019 Aug; 27(16):23080-23094. PubMed ID: 31510590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.
    Xu K; Xie T; Li Z; Xu X; Wang M; Ye X; Kong F; Geng J; Duan C; Shi F; Du J
    Phys Rev Lett; 2017 Mar; 118(13):130504. PubMed ID: 28409975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient shortcuts to adiabatic passage for three-dimensional entanglement generation via transitionless quantum driving.
    He S; Su SL; Wang DY; Sun WM; Bai CH; Zhu AD; Wang HF; Zhang S
    Sci Rep; 2016 Aug; 6():30929. PubMed ID: 27499169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.