These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16196859)

  • 1. Quasiregular concentric waves in heterogeneous lattices of coupled oscillators.
    Blasius B; Tönjes R
    Phys Rev Lett; 2005 Aug; 95(8):084101. PubMed ID: 16196859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization of spiral wave patterns in two-layer 2D lattices of nonlocally coupled discrete oscillators.
    Bukh AV; Schöll E; Anishchenko VS
    Chaos; 2019 May; 29(5):053105. PubMed ID: 31154795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective synchronization in spatially extended systems of coupled oscillators with random frequencies.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036217. PubMed ID: 16241558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave patterns in frequency-entrained oscillator lattices.
    Sträng JE; Ostborn P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056137. PubMed ID: 16383718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective phase synchronization in locally coupled limit-cycle oscillators.
    Hong H; Park H; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045204. PubMed ID: 15600451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network.
    Kagawa Y; Takamatsu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046216. PubMed ID: 19518321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency precision of two-dimensional lattices of coupled oscillators with spiral patterns.
    Allen JM; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052902. PubMed ID: 23767593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling.
    Shepelev IA; Muni SS; Vadivasova TE
    Chaos; 2021 Feb; 31(2):021104. PubMed ID: 33653058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase synchronization of diffusively coupled Rössler oscillators with funnel attractors.
    Yang HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026206. PubMed ID: 11497676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.
    Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-phase, out-of-phase and T/4 synchronization of square waves in delay-coupled non-identical optoelectronic oscillators.
    Martínez-Llinàs J; Colet P
    Opt Express; 2015 Sep; 23(19):24785-99. PubMed ID: 26406679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent synchronization of coupled oscillators with spontaneous phase reformation.
    Jeon JH; Kim P
    Chaos; 2018 Oct; 28(10):103113. PubMed ID: 30384644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortices and the entrainment transition in the two-dimensional Kuramoto model.
    Lee TE; Tam H; Refael G; Rogers JL; Cross MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036202. PubMed ID: 21230156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in phase-coupled Kuramoto oscillator networks with axonal delay and synaptic plasticity.
    Timms L; English LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032906. PubMed ID: 24730912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016112. PubMed ID: 19257112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions.
    Giver M; Jabeen Z; Chakraborty B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046206. PubMed ID: 21599269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal critical behavior of noisy coupled oscillators: a renormalization group study.
    Risler T; Prost J; Jülicher F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016130. PubMed ID: 16090059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective phase locked states in a chain of coupled chaotic oscillators.
    Valladares DL; Boccaletti S; Feudel F; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):055208. PubMed ID: 12059635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.